4.5 Article

Deep exploration of a CDKN1C mutation causing a mixture of Beckwith-Wiedemann and IMAGe syndromes revealed a novel transcript associated with developmental delay

Journal

JOURNAL OF MEDICAL GENETICS
Volume 59, Issue 2, Pages 155-164

Publisher

BMJ PUBLISHING GROUP
DOI: 10.1136/jmedgenet-2020-107401

Keywords

gain of function mutation; INDEL mutation; RNA-seq

Funding

  1. Trond Mohn Foundation

Ask authors/readers for more resources

This study reports on a boy with a mixture of Beckwith-Wiedemann syndrome (BWS) and IMAGe syndrome, along with additional features of developmental delay and microcephaly. The researchers identified a variant in the CDKN1C gene that resulted in the production of three different RNA products, explaining the co-occurring features of both syndromes.
Background Loss-of-function mutations in CDKN1C cause overgrowth, that is, Beckwith-Wiedemann syndrome (BWS), while gain-of-function variants in the gene's PCNA binding motif cause a growth-restricted condition called IMAGe syndrome. We report on a boy with a remarkable mixture of both syndromes, with developmental delay and microcephaly as additional features. Methods Whole-exome DNA sequencing and ultra-deep RNA sequencing of leucocyte-derived and fibroblast-derived mRNA were performed in the family. Results We found a maternally inherited variant in the IMAGe hotspot region: NM_000076.2(CDKN1C) c.822_826delinsGAGCTG. The asymptomatic mother had inherited this variant from her mosaic father with mild BWS features. This delins caused tissue-specific frameshifting resulting in at least three novel mRNA transcripts in the boy. First, a splice product causing CDKN1C truncation was the likely cause of BWS. Second, an alternative splice product in fibroblasts encoded IMAGe-associated amino acid substitutions. Third, we speculate that developmental delay is caused by a change in the alternative CDKN1C-201 (ENST00000380725.1) transcript, encoding a novel isoform we call D (UniProtKB: A6NK88). Isoform D is distinguished from isoforms A and B by alternative splicing within exon 1 that changes the reading frame of the last coding exon. Remarkably, this delins changed the reading frame back to the isoform A/B type, resulting in a hybrid D-A/B isoform. Conclusion Three different cell-type-dependent RNA products can explain the co-occurrence of both BWS and IMAGe features in the boy. Possibly, brain expression of hybrid isoform D-A/B is the cause of developmental delay and microcephaly, a phenotypic feature not previously reported in CDKN1C patients.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available