4.5 Article

Multi-scale strength and buckling analysis of 3D woven composite spherical shells subjected to hydrostatic pressure

Journal

JOURNAL OF INDUSTRIAL TEXTILES
Volume 51, Issue 4_SUPPL, Pages 6236S-6257S

Publisher

SAGE PUBLICATIONS INC
DOI: 10.1177/1528083720981999

Keywords

3D woven composites; spherical shell; finite element analysis; strength; buckling analysis

Funding

  1. Natural Science Foundation of China [11702115, 12072131]
  2. Natural Science Foundation of Jiangsu Province (P.R.China) [BK20170166]
  3. National science and Technology Major Project [2017-VI-0007-0076]
  4. Key Research Projects of China [2016YFC0304301]
  5. Shanghai Aerospace Science and Technology Innovation Fund [SAST-2019105]

Ask authors/readers for more resources

This paper investigates the mechanical behavior of 3D woven composite spherical shells using multi-scale finite element and theoretical methods. The results demonstrate that the fabric structures, radius-to-thickness ratio, and initial defects significantly affect the performance of pressure shells.
3D woven composites are considered as the ideal materials for subsea pressure shells owing to their exhibit excellent out-of-plane properties of delamination resistance and compressive damage resistance, which greatly improves the bearing capacity of the structure. This paper presents the influence of the radius-to-thickness ratio and the initial defects on the 3D woven composite spherical shells subjected to external hydrostatic pressure using the multi-scale finite element and theoretical methods. Two kinds of typical 3D woven structures, curved shallow-crossing linking 2.5D, and straight shallow-crossing linking 2.5D, are selected. The results show that the proposed multi-scale finite element method is capable of accurately predicting the strength and buckling behavior of 3D woven composite spherical shells under external hydrostatic pressure loadings, validated by the comparison of theoretical predictions. Furthermore, the fabric structures, radius-to-thickness ratio, and initial defects affect importantly the mechanical behavior of 3D woven composites pressure shells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available