4.7 Article

Feasibility of using fly ash-slag-based binder for mine backfilling and its associated leaching risks

Journal

JOURNAL OF HAZARDOUS MATERIALS
Volume 400, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.jhazmat.2020.123191

Keywords

MSWI fly ash; Filling parameters; Leaching levels; Hydrate calcium chloroaluminate; C-S-H gels

Funding

  1. National Key Research and Development Program of China [2018YFC1900603]
  2. key research and development program of Hebei province [18273807D]

Ask authors/readers for more resources

As a binder to completely replace Portland cement for mine backfilling, the use of clinker-free cementitious materials combined with municipal solid waste incineration (MSWI) fly ash is proposed to achieve the targets of low-cost green backfilling, safe disposal and resource utilisation of bulk urban hazardous waste and metallurgical solid waste. This study balances the positive and negative effects of adding MSWI fly ash to the backfill by controlling its quantity in the binders, thus establishing an optimal concentration of 49 wt.% steel slag (SS), 21 wt.% blast furnace slag (BFS), 10 wt.% MSWI fly ash and 20 wt.% flue gas desulfurisation (FGD) gypsum. It is also reported that the filling performance of slurry (A2) satisfied strength requirements and is very suitable for long-distance transportation according to filling parameters. The leaching levels of the target elements (Cr, Ni, Zn, As, Cd, Sb, Pb, Hg and dioxins) for A2 matrix are lower than the required maximum concentration limits for the underground class III water standard. Furthermore, the risk of leaching harmful constituents is mainly controlled by the pH of the environmental and the excellent buffering capacity of the matrix can reduce the potential leaching risk. The encapsulation, precipitation and adsorption of low-solubility double salts, such as hydrate calcium chloroaluminate (HCC) and ettringite, are the solidification/stabilisation (S/S) mechanism of series A on harmful substances. In addition, the high degree of polymerization(Ca/Si = 1.18 < 1.2, at 90d), the formation of long-chain C-S-H gels in binder A2-2, the dense pore structure lead to very stable growth in strength and control of leaching risks in subsequent periods.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available