4.7 Article

Environmental fate, toxicity and risk management strategies of nanoplastics in the environment: Current status and future perspectives

Journal

JOURNAL OF HAZARDOUS MATERIALS
Volume 401, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.jhazmat.2020.123415

Keywords

Plastic pollution; Contaminant migration; Terrestrial ecosystem; Environmental remediation; Virus; Risk management

Funding

  1. National Key Research and Development Program of China [2018YFC1801300]
  2. Woods Institute for Environment at Stanford University [1197667-10-WTAZB]

Ask authors/readers for more resources

Tiny plastic particles, including microplastics (MPs) and nanoplastics (NPs), are considered emerging contaminants with formation mechanisms such as mechanical abrasion. Research on the environmental fate and ecosystem toxicity of NPs is limited compared to MPs, calling for further exploration in these areas.
Tiny plastic particles considered as emerging contaminants have attracted considerable interest in the last few years. Mechanical abrasion, photochemical oxidation and biological degradation of larger plastic debris result in the formation of microplastics (MPs, 1 mu m to 5 mm) and nanoplastics (NPs, 1 nm to 1000 nm). Compared with MPs, the environmental fate, ecosystem toxicity and potential risks associated with NPs have so far been less explored. This review provides a state-of-the-art overview of current research on NPs with focus on currently less-investigated fields, such as the environmental fate in agroecosystems, migration in porous media, weathering, and toxic effects on plants. The co-transport of NPs with organic contaminants and heavy metals threaten human health and ecosystems. Furthermore, NPs may serve as a novel habitat for microbial colonization, and may act as carriers for pathogens (i.e., bacteria and viruses). An integrated framework is proposed to better understand the interrelationships between NPs, ecosystems and the human society. In order to fully understand the sources and sinks of NPs, more studies should focus on the total environment, including freshwater, ocean, groundwater, soil and air, and more attempts should be made to explore the aging and aggregation of NPs in environmentally relevant conditions. Considering the fact that naturally-weathered plastic debris may have distinct physicochemical characteristics, future studies should explore the environmental behavior of naturally-aged NPs rather than synthetic polystyrene nanobeads.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available