4.6 Article Proceedings Paper

Hybrid gas sensor based on platinum nanoparticles/poly(methyl methacrylate)-coated single-walled carbon nanotubes for dichloromethane detection with a high response magnitude

Journal

DIAMOND AND RELATED MATERIALS
Volume 65, Issue -, Pages 183-190

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.diamond.2016.03.016

Keywords

Single-walled carbon nanotube; Dichloromethane; Poly(methyl methacrylate); Platinum nanoparticles; Gas sensor

Ask authors/readers for more resources

A dichloromethane (DCM) sensor with a high response magnitude was successfully fabricated using the integration of single-walled carbon nanotubes (SWNTs), poly(methyl methacrylate) (PMMA) and platinum nanoparticles (Pt NPs). A pristine SWNT network was first formed by drop-casting onto printed circuit board (PCB) substrates. Next, PMMA was coated onto the pre-dropped SWNT network by spin coating using a PMMA-toluene solution, followed by the deposition of Pt NPs by electron-beam evaporation ( hereafter referred to as Pt/PMMA/SWNT). The Pt/PMMA/SWNT enabled an approximately 69-fold improvement in DCM detection compared to pristine SWNT. The high response magnitude of the Pt/PMMA/SWNT was successfully achieved because of the incorporation of PMMA and Pt functions. Swelling of the PMMA matrix as a result of DCM adsorption leads to PMMA volume expansion, thereby increasing the SWNT-SWNT distance, which results in an increase in the resistance. Pt NPs promote the dissociation of DCM to CO, and consequently the CO oxidation on the Pt NPs catalyst and electron donation from Pt NPs to SWNTs, resulting in an increase in the resistance. Moreover, a linear relationship was obtained between the sensor response of the Pt/PMMA/SWNT and the concentration of DCM. These results suggest that the integration of SWNTs with PMMA and Pt NPs is a promising approach for improving DCM detection at room temperature. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available