4.7 Article

Valorisation of soil contaminated by petroleum hydrocarbons and toxic metals in geopolymer mortar formation

Journal

JOURNAL OF ENVIRONMENTAL MANAGEMENT
Volume 278, Issue -, Pages -

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2020.111410

Keywords

Geopolymers; Polluted soil; Remediation; Stabilization

Ask authors/readers for more resources

This study focused on using thermal desorption to remediate contaminated soil from a refinery, and then utilizing the treated soil for geopolymer formation to produce useful building materials. Results showed that the geopolymer with 50% metakaolin and 50% remediated soil had negligible content of organic pollutants, the toxic metals were immobilized, and the strength increased, providing significant recycling benefits.
Until the complete transition to a renewable energy sources based economy, the potential environmental hazards associated with petroleum refinery industries affecting water, air and soil seek sustainable solutions. In the present study contaminated soil from a refinery is used as an alternative source for producing useful building materials by geopolymerization. To this end, soil remediation by thermal desorption was initially applied. Thermal treatment was performed between 60 and 250 degrees C for short time intervals (10-30 min) in order to remove organic pollutants (Total Petroleum Hydrocarbons, TPHs and Polycyclic Aromatic Hydrocarbons, PAHs). Physical, chemical analyses, mineral phase composition, as well as thermogravimetric analysis were employed to characterize the sample. Moreover, removal efficiency of TPHs and PAHs was evaluated. Subsequently, the treated soil presenting the maximum elimination of TPH and PAHs was used in geopolymer mortar formation aiming to stabilize the toxic metals (TMs) and produce a possible profitable material. For geopolymer synthesis the substitution of metakaolin (MT) by treated soil at 0, 50, 70 and 100% was tested. The produced specimens were evaluated based on the 28 day compressive strength and metals leaching. Results showed that the geopolymer constructed by 50% MT-50% remediated soil at 250 degrees C for 30 min, had negligible content of organic pollutants, TMs were immobilized and exhibited increased strength thus giving significant recycling benefits. Valorisation of industrial residues to produce building materials is a promising solution for sustainable waste management.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available