4.7 Article

Genome-wide identification of Calcineurin B-Like (CBL) gene family of plants reveals novel conserved motifs and evolutionary aspects in calcium signaling events

Journal

BMC PLANT BIOLOGY
Volume 15, Issue -, Pages -

Publisher

BMC
DOI: 10.1186/s12870-015-0543-0

Keywords

CBL; CPK; Palmitoylation; Myristoylation; Evolution

Categories

Funding

  1. Yeungnam University Research Grant [214A367010]

Ask authors/readers for more resources

Background: Calcium ions, the most versatile secondary messenger found in plants, are involved in the regulation of diverse arrays of plant growth and development, as well as biotic and abiotic stress responses. The calcineurin B-like proteins are one of the most important genes that act as calcium sensors. Results: In this study, we identified calcineurin B-like gene family members from 38 different plant species and assigned a unique nomenclature to each of them. Sequence analysis showed that, the CBL proteins contain three calcium binding EF-hand domain that contains several conserved Asp and Glu amino acid residues. The third EF-hand of the CBL protein was found to posses the D/E-x-D calcium binding sensor motif. Phylogenetic analysis showed that, the CBL genes fall into six different groups. Additionally, except group B CBLs, all the CBL proteins were found to contain N-terminal palmitoylation and myristoylation sites. An evolutionary study showed that, CBL genes are evolved from a common ancestor and subsequently diverged during the course of evolution of land plants. Tajima's neutrality test showed that, CBL genes are highly polymorphic and evolved via decreasing population size due to balanced selection. Differential expression analysis with cold and heat stress treatment led to differential modulation of OsCBL genes. Conclusions: The basic architecture of plant CBL genes is conserved throughout the plant kingdom. Evolutionary analysis showed that, these genes are evolved from a common ancestor of lower eukaryotic plant lineage and led to broadening of the calcium signaling events in higher eukaryotic organisms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available