4.7 Article

General Theory of Fragment Linking in Molecular Design: Why Fragment Linking Rarely Succeeds and How to Improve Outcomes

Journal

JOURNAL OF CHEMICAL THEORY AND COMPUTATION
Volume 17, Issue 1, Pages 450-462

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jctc.0c01004

Keywords

-

Ask authors/readers for more resources

Fragment linking is an important technique in optimizing the binding potency of fragment hits in drug discovery, but successful strategies are rare due to various confounding factors. The change in relative configurational entropy of the fragments in the protein binding pocket is found to be the dominant reason for the lack of expected gains in binding potency. This study provides insights that should facilitate the formulation of more successful fragment linking strategies in the future.
Linking two fragments binding in nearby subpockets together has become an important technique in fragment-based drug discovery to optimize the binding potency of fragment hits. Despite the expected favorable translational and orientational entropic contribution to the binding free energy of the linked molecule, brute force enumeration of chemical linker for linking fragments is rarely successful, and the vast majority of linked molecules do not exhibit the expected gains of binding potency. In this paper, we examine the physical factors that contribute to the change of binding free energy from fragment linking and develop a method to rigorously calculate these different physical contributions. We find from these analyses that multiple confounding factors make successful fragment linking strategies rare, including (1) possible change of the binding mode of the fragments in the linked state compared to separate binding of the fragments, (2) unfavorable intramolecular strain energy of the bioactive conformation of the linked molecule, (3) unfavorable interaction between the linker and the protein, (4) favorable interaction energies between two fragments in solution when not chemically linked that offset the expected entropy loss for the formation of fragment pair, (5) complex compensating configurational entropic effects beyond the simplistic rotational and translational analysis. We here have applied a statistically mechanically rigorous approach to compute the fragment linking coefficients of 10 pharmaceutically interesting systems and quantify the contribution of each physical component to the binding free energy of the linked molecule. Based on these studies, we have found that the change in the relative configurational entropy of the two fragments in the protein binding pocket (a term neglected to our knowledge in all previous analyses) substantially offsets the favorable expected rotational and translational entropic contributions to the binding free energy of the linked molecule. This configurational restriction of the fragments in the binding pocket of the proteins is found to be, in our analysis, the dominant reason why most fragment linking strategies do not exhibit the expected gains of binding potency. These findings have further provided rich physical insights, which we expect should facilitate more successful fragment linking strategies to be formulated in the future.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available