4.7 Article

Reduced-cost supercell approach for computing accurate phonon density of states in organic crystals

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 153, Issue 22, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/5.0032649

Keywords

-

Funding

  1. National Science Foundation [CHE-1955554]
  2. XSEDE [TG-CHE110064]

Ask authors/readers for more resources

Phonon contributions to organic crystal structures and thermochemical properties can be significant, but computing a well-converged phonon density of states with lattice dynamics and periodic density functional theory (DFT) is often computationally expensive due to the need for large supercells. Using semi-empirical methods like density functional tight binding (DFTB) instead of DFT can reduce the computational costs dramatically, albeit with noticeable reductions in accuracy. This work proposes approximating the phonon density of states via a relatively inexpensive DFTB supercell treatment of the phonon dispersion that is then corrected by shifting the individual phonon modes according to the difference between the DFT and DFTB phonon frequencies at the Gamma-point. The acoustic modes are then computed at the DFT level from the elastic constants. In several small-molecule crystal test cases, this combined approach reproduces DFT thermochemistry with kJ/mol accuracy and 1-2 orders of magnitude less computational effort. Finally, this approach is applied to computing the free energy differences between the five crystal polymorphs of oxalyl dihydrazide. Published under license by AIP Publishing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available