4.5 Review

Review of in vivo optical molecular imaging and sensing from x-ray excitation

Journal

JOURNAL OF BIOMEDICAL OPTICS
Volume 26, Issue 1, Pages -

Publisher

SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS
DOI: 10.1117/1.JBO.26.1.010902

Keywords

Cerenkov; emission; fluorescence; phosphorescence; radioluminescence; scintillation

Funding

  1. National Institutes of Health [R01EB024498, P30CA023108]

Ask authors/readers for more resources

X-rays can penetrate deep tissues to induce optical responses of specific molecular reporters, offering a new way to sense and image tissue function in vivo. Advances in this field include the invention of biocompatible probes and innovations in optimizing the use of x-ray sources.
Significance: Deep-tissue penetration by x-rays to induce optical responses of specific molecular reporters is a new way to sense and image features of tissue function in vivo. Advances in this field are emerging, as biocompatible probes are invented along with innovations in how to optimally utilize x-ray sources. Aim: A comprehensive review is provided of the many tools and techniques developed for x-rayinduced optical molecular sensing, covering topics ranging from foundations of x-ray fluorescence imaging and x-ray tomography to the adaptation of these methods for sensing and imaging in vivo. Approach: The ways in which x-rays can interact with molecules and lead to their optical luminescence are reviewed, including temporal methods based on gated acquisition and multipoint scanning for improved lateral or axial resolution. Results: While some known probes can generate light upon x-ray scintillation, there has been an emergent recognition that excitation of molecular probes by x-ray-induced Cherenkov light is also possible. Emission of Cherenkov radiation requires a threshold energy of x-rays in the high kV or MV range, but has the advantage of being able to excite a broad range of optical molecular probes. In comparison, most scintillating agents are more readily activated by lower keV x-ray energies but are composed of crystalline inorganic constituents, although some organic biocompatible agents have been designed as well. Methods to create high-resolution structured x-ray-optical images are now available, based upon unique scanning approaches and/or a priori knowledge of the scanned x-ray beam geometry. Further improvements in spatial resolution can be achieved by careful system design and algorithm optimization. Current applications of these hybrid x-ray-optical approaches include imaging of tissue oxygenation and pH as well as of certain fluorescent proteins. Conclusions: Discovery of x-ray-excited reporters combined with optimized x-ray scan sequences can improve imaging resolution and sensitivity. (C) The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available