4.5 Article

Micromechanical poroelastic and viscoelastic properties of ex-vivo soft tissues

Journal

JOURNAL OF BIOMECHANICS
Volume 113, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.jbiomech.2020.110090

Keywords

Soft tissue; Nanoindentation; Load-relaxation; Viscoelastic; Poroelastic

Funding

  1. ECU Division of Research, Economic Development and Engagement (REDE)
  2. Brody Brothers Endowment award

Ask authors/readers for more resources

Soft biological tissues demonstrate strong time-dependent mechanical behavior, arising from their intrinsic viscoelasticity and fluid flow-induced poroelasticity. It is increasingly recognized that time-dependent mechanical properties of soft tissues influence their physiological functions and are linked to several pathological processes. Nevertheless, soft tissue time-dependent characteristics, especially their micromechanical variation with tissue composition and location, remain poorly understood. Nanoindentation is a well-established technique to measure local elastic properties but has not been fully explored to determine micro-scale time-dependent properties of soft tissues. Here, a nanoindentationbased experimental strategy is implemented to characterize the micro-scale poroelastic and viscoelastic behavior of mouse heart, kidney, and liver tissues. It is demonstrated that heart tissue exhibits substantial mechanical heterogeneity where the elastic modulus varies spatially from 1 to 30 kPa. In contrast, both kidney and liver tissues show relatively homogeneous response with elastic modulus 0.5-3 kPa. All three tissues demonstrate marked load relaxation under constant indentation, where the relaxation behavior is observed to be largely dominated by tissue viscoelasticity. Intrinsic permeability varies among different tissues, where heart tissue is found to be less permeable compared to kidney and liver tissues. Overall, the results presented herein provide key insights into the time-dependent micromechanical behavior of different tissues and can therefore contribute to studies of tissue pathology and tissue engineering applications. (C) 2020 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available