4.7 Review

A review on fluorescence intensity ratio thermometer based on rare-earth and transition metal ions doped inorganic luminescent materials

Journal

JOURNAL OF ALLOYS AND COMPOUNDS
Volume 850, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2020.156744

Keywords

Fluorescence intensity ratio thermometer; Temperature sensing; Sensitivity

Funding

  1. 2019 Special Funds for the Development of Local Colleges and Universities - Central Finance, Key Platforms and Research Projects of Department of Education of Guangdong Province [2017KTSCX054]
  2. National Natural Science Foundation of China [11804057, 11604056]
  3. Innovation and Entrepreneurship Training Programs for Chinese College Students [201811845231, 201911845211]

Ask authors/readers for more resources

This review examines the current research status of all inorganic thermometers based on fluorescence intensity ratio (FIR) technology, categorizing and analyzing the thermometers in detail, discussing performance parameters, and looking forward to the future development.
Here, the present research situation of all inorganic thermometers based on fluorescence intensity ratio (FIR) technology is reviewed. The thermometers are classified in detail based on type of luminescence center, and the principle equations of the thermometers are derived. The results show that the temperature sensing principles of single emission center and dual emission centers are similar. Further, the dual emission centers thermometers are classified into four different types and their characteristics are analyzed. The performance parameters of the thermometer, absolute sensitivity, relative sensitivity, resolution and repeatability have been discussed, respectively. The analysis results of a large number of studies show that the sensitivity is affected by the matrix phonon energy, crystal coordination environment, material size, doping concentration, etc. Inorganic optical thermometers show great potential in non-contact temperature sensing due to the excellent repeatability of inorganic materials. We summarize the current difficulties and look forward to the future of thermometers. Therefore, the review has positive effect on the development of inorganic FIR thermometers towards excellent performance. (C) 2020 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available