4.5 Article

High-performance laminate material based on polyurethane and epoxide reinforced by silica particles from rice husk used for intelligent pedestrian crossings

Journal

IRANIAN POLYMER JOURNAL
Volume 30, Issue 3, Pages 319-330

Publisher

SPRINGER
DOI: 10.1007/s13726-020-00894-6

Keywords

Laminates; Epoxy resin; Thermoplastic polyurethane; Pedestrian crossings; Safety

Funding

  1. Ministry of Education, Science and Technological Development of the Republic of Serbia [451-03-68/2020-14/200135]
  2. Innovation Fund of the Republic of Serbia [284]

Ask authors/readers for more resources

Intelligent pedestrian crossings are designed to increase pedestrian safety in poorly lit areas. New technologies incorporate high-performance polymer materials to meet traffic demands and achieve functionality. The use of laminate material with SiO2 derived from rice husk waste in epoxy composite enhances mechanical properties and LED light transmission/diffusion for intelligent pedestrian crossings.
Intelligent pedestrian crossings were made with the aim to increase pedestrian safety at poorly lit locations. New technologies include the design of polymer materials that have high performance by optimizing properties such as compression, tensile and impact strengths, wear resistance, hardness and transparency. The desired properties are set up to face the demands of a heavy daily traffic load and enable the functionality. Laminate material consists of the epoxy composite reinforced with silica (SiO2) derived from rice husk waste and a protective thermoplastic polyurethane layer. The top layer of the laminate material is a transparent thermoplastic polyurethane (TPU) serving as a protective layer with high wear resistance and good adhesion with epoxy composite. Silica obtained from rice husk waste was used in reinforcing of the epoxide in order to improve the mechanical properties, diffuse the light, improve the adhesion with TPU and decrease the production costs. Micro-Vickers hardness of the epoxy composite was increased by 70% with the addition of 15 wt% of SiO2. Impact energy of the epoxy composite with 15 wt% of SiO2 was increased by 272.9% after adding the TPU layer. Compressive strength of the epoxy resin is improved by 16.2% by reinforcement with 15 wt% of SiO2, while the laminate composite material showed 207% higher compressive strength than the commonly used asphalt pavement. Moreover, the addition of 15 wt% of SiO2 improved the adhesion between epoxy composite and TPU layer (11.2%). Thus, obtained laminated material made of the epoxy composite with 15 wt% of SiO2 (obtained from rice husk waste) and TPU598 showed mechanical properties and LED light transmission/diffusion appropriate for application in the intelligent pedestrian crossings.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available