4.6 Article

Automated Detection and Quantification of COVID-19 Airspace Disease on Chest Radiographs A Novel Approach Achieving Expert Radiologist-Level Performance Using a Deep Convolutional Neural Network Trained on Digital Reconstructed Radiographs From Computed Tomography-Derived Ground Truth

Journal

INVESTIGATIVE RADIOLOGY
Volume 56, Issue 8, Pages 471-479

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/RLI.0000000000000763

Keywords

artificial intelligence; deep learning; radiography; thoracic; tomography; COVID-19

Ask authors/readers for more resources

This study leveraged CT-derived volumetric quantification of airspace disease to train a CNN for quantifying AD on CXRs of patients with confirmed COVID-19. The CNN performed at a level comparable to expert human readers in quantifying AD on CXR.
Objectives The aim of this study was to leverage volumetric quantification of airspace disease (AD) derived from a superior modality (computed tomography [CT]) serving as ground truth, projected onto digitally reconstructed radiographs (DRRs) to (1) train a convolutional neural network (CNN) to quantify AD on paired chest radiographs (CXRs) and CTs, and (2) compare the DRR-trained CNN to expert human readers in the CXR evaluation of patients with confirmed COVID-19. Materials and Methods We retrospectively selected a cohort of 86 COVID-19 patients (with positive reverse transcriptase-polymerase chain reaction test results) from March to May 2020 at a tertiary hospital in the northeastern United States, who underwent chest CT and CXR within 48 hours. The ground-truth volumetric percentage of COVID-19-related AD (POv) was established by manual AD segmentation on CT. The resulting 3-dimensional masks were projected into 2-dimensional anterior-posterior DRR to compute area-based AD percentage (POa). A CNN was trained with DRR images generated from a larger-scale CT dataset of COVID-19 and non-COVID-19 patients, automatically segmenting lungs, AD, and quantifying POa on CXR. The CNN POa results were compared with POa quantified on CXR by 2 expert readers and to the POv ground truth, by computing correlations and mean absolute errors. Results Bootstrap mean absolute error and correlations between POa and POv were 11.98% (11.05%-12.47%) and 0.77 (0.70-0.82) for average of expert readers and 9.56% to 9.78% (8.83%-10.22%) and 0.78 to 0.81 (0.73-0.85) for the CNN, respectively. Conclusions Our CNN trained with DRR using CT-derived airspace quantification achieved expert radiologist level of accuracy in the quantification of AD on CXR in patients with positive reverse transcriptase-polymerase chain reaction test results for COVID-19.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available