4.7 Article

Modelling gas flow in clay materials incorporating material heterogeneity and embedded fractures

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijrmms.2020.104524

Keywords

Hydro-gas-mechanical 3D model; Gas flow; Embedded fracture model; Material heterogeneity

Funding

  1. Andra
  2. BGR/UFZ
  3. CNSC
  4. US DOE
  5. ENSI
  6. JAEA
  7. IRSN
  8. KAERI
  9. NWMO
  10. RWM
  11. SURAO
  12. SSM
  13. Taipower
  14. International Centre for Numerical Methods in Engineering (CIMNE)
  15. Spanish Ministry of Economy and Competitiveness [CEX2018-000797-S]

Ask authors/readers for more resources

A series of gas injection tests on compacted bentonite were carried out at the British Geological Survey. Tests measurements included pressure and rate of gas inflow, gas outflow volume as well as stresses and pore pressure observed at various points of the sample. Tests were performed with two different gas injection systems: injecting the gas from one end of the sample (axial flow) or from one point at the centre of the sample (spherical flow). A coupled hydro-gas-mechanical 3D numerical model has been developed to simulate the tests. Initial permeability is assumed heterogeneous throughout the specimen and embedded fractures are incorporated in the formulation. Gas pressure-induced deformations during the test lead to variations of permeability due to changes in matrix porosity and, especially, fracture aperture. The model is able to reproduce satisfactorily the observed behaviour of the tests including the existence of preferential gas flow paths. A programme of sensitivity analyses involving the variation of different aspects and parameters of the model contributes to a better understanding of the phenomenon and highlights its complexity. The application of the same formulation and parameters calibrated in the axial flow test results in a successful simulation of the spherical flow test.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available