4.7 Article

Effect of Luders and Portevin-Le Chatelier localization bands on plasticity and fracture of notched steel specimens studied by DIC and FE simulations

Journal

INTERNATIONAL JOURNAL OF PLASTICITY
Volume 136, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijplas.2020.102880

Keywords

C-Mn steel; Single edge notch tension; High temperature DIC; Portevin-Le Chatelier effect; Strain localization; Slant fracture

Funding

  1. Institut Carnot M.I.N.E.S

Ask authors/readers for more resources

The study investigates the impact of the PLC effect on plasticity and fracture of C-Mn steel, showing that at elevated temperature, the PLC effect leads to changes in crack morphology and reduces the absorbed fracture energy.
The impact of the Portevin-Le Chatelier (PLC) effect on plasticity and fracture ahead of a severe notch is investigated by DIC field measurements for C-Mn steel. The PLC effect causes an intermittent activity of highly localized strain rate bands. This first high temperature investigation of the effect of a notch on the PLC localization bands is successfully reproduced numerically in terms of strain localization in 3D FE simulations. This thereby validates quantitatively the McCormick-type model under these complex conditions. It is found that, when the PLC effect is at play at elevated temperature (175 degrees C), a flat to slant crack transition is observed. In contrast, at room temperature, when only Luders bands are active, the crack remains mostly flat, i.e. normal to the loading direction of the SENT samples. This behaviour may be related to the early loss of symmetry and intermittency of the plastic zone that is found for PLC even affecting the initial Luders bands at elevated temperature. During the slant fracture at high temperature, only half the fracture energy is absorbed compared to flat fracture at room temperature. The McCormick-type model simulations predict slant strain rate bands through the sample thickness, that are consistent with the slant fracture found at elevated temperature. Accordingly, no slant bands are found for simulations outside the PLC domain. Both experiments and simulations show PLC strain localization bands that are flip-flopping up and down during crack propagation. By combining the McCormick-type model with a Rousselier porous plasticity model, the flat fracture of the sample at room temperature and the associated macroscopic curve are reproduced successfully, but the toughness at elevated temperature is overestimated.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available