4.6 Article

A computational analysis of heat transport irreversibility phenomenon in a magnetized porous channel

Journal

Publisher

EMERALD GROUP PUBLISHING LTD
DOI: 10.1108/HFF-07-2020-0418

Keywords

Porous media; Entropy generation; Horizontal channel; Mixed convective transport; Thermodynamics process

Ask authors/readers for more resources

This paper evaluates the temperature of parallel horizontal plates by considering the Dirichlet conditions. The effects of various flow parameters on fluid flow are graphically presented and discussed. Through the application of thermodynamic irreversible principle, the study examines the influence of control parameters on flow field and entropy generation in unsteady mixed convection flow.
Purpose The purpose of this paper is to evaluate the temperature, the Dirichlet conditions have been considered to the parallel horizontal plates. The model of generalized Brinkman-extended Darcy with the Boussinesq approximation is considered and the governing equations are computed by COMSOL multiphysics. Design/methodology/approach In the current study, the thermodynamic irreversible principle is applied to study the unsteady Poiseuille-Rayleigh-Benard (PRB) mixed convection in a channel (aspect ratio A = 5), with the effect of a uniform transverse magnetic field. Findings The effects of various flow parameters on the fluid flow, Hartmann number (Ha), Darcy number (Da), Brinkman number (Br) and porosity (epsilon), are presented graphically and discussed. Numerical results for temperature and velocity profiles, entropy generation variations and contour maps of streamlines, are presented as functions of the governing parameter mentioned above. Basing on the generalized Brinkman-extended Darcy formulation, which allows the satisfaction of the no-slip boundary condition on a solid wall, it is found that the flow field and then entropy generation is notably influenced by the considering control parameters. The results demonstrate that the flow tends toward the steady-state with four various regimes, which strongly depends on the Hartman and Darcy numbers variations. Local thermodynamic irreversibilities are more confined near the active top and bottom horizontal walls of the channel when increasing the Da and decreasing the Hartmann number. Entropy generation is also found to be considerably affected by Brinkman number variation. Originality/value In the present work, we are presenting our investigations on the influence of a transverse applied external magnetohydrodynamic on entropy generation at the unsteady laminar PRB flow of an incompressible, Newtonian, viscous electrically conducting binary gas mixture fluid in porous channel of two horizontal heated plates. The numerical solutions for the liquid velocity, the temperature distribution and the rates of heat transport and entropy generation are obtained and are plotted graphically.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available