4.7 Article

Production of metal oxides nanoparticles based on poly-alanine/chitosan/reduced graphene oxide for photocatalysis degradation, anti-pathogenic bacterial and antioxidant studies

Journal

INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES
Volume 164, Issue -, Pages 1584-1591

Publisher

ELSEVIER
DOI: 10.1016/j.ijbiomac.2020.07.291

Keywords

Metal oxides; Graphene oxide; Chitosan; Photocatalysis; Bactericidal

Funding

  1. Nano Smart Science Institute

Ask authors/readers for more resources

A novel AgO-CoO-CdO/Poly(alanine)-chitosan-reduced graphene oxide (PACSGO) nanocomposite was developed to study the degradation efficiency under visible light irradiation. The AgO, CoO, CdO nanoparticles and AgO-CoO-CdO heterometal oxides were prepared by using the chemical method. The crystallite structure and phase studies were studied by the X-ray diffraction assay. The SEM images were evaluated to explore the morphology of the pre-pared materials. EDS analysis and FTIR spectra confirmed the formation of nano-materials with high purity. The optical bandgap values were measured via Kubelka-Munk plot showing that the metal oxides produced a new energy state in the electronic level for high photocatalysis efficiency. The incorporation of AgO-CoO-CdO in PACSGO showed a novel nano-photocatalyst for substantial degradation of dye in low process time. The catalysis data displayed that PACSGO based AgO-CoO-CdO nanocomposites ensured a strong potential to degradation of organic dye compounds from water in during photocatalysis reaction. The beneficial anti-pathogenic bacterial performance of the AgO-CoO-CdO/PACSGO nanocomposites was further demonstrated by a substantial reduction in the amount of Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and B. cereus medium and increase in inhibition zone value with the addition of the AgO-CoO-CdO/PACSGO nanocomposites. (C) 2020 Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available