4.7 Article

Cattaneo-Christov double diffusions and entropy generation in MHD second grade nanofluid flow by a Riga wall

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.icheatmasstransfer.2020.104824

Keywords

Second grade fluid; Cattaneo-Christov (CC) model; Riga plate; Mixed convection; Nanofluid; Entropy generation

Ask authors/readers for more resources

This article addresses the (MHD) magnetohydrodynamic flow of second grade nano-fluid. Stagnation point flow towards a stretched Riga wall is examined. Heat and mass transfer analyses are based upon Cattaneo-Christov (CC) theory. These considerations are entirely different than classical heat and mass fluxes by Fourier and Fick's laws. In addition, the convective condition of heat transfer is involved. Novel concept of entropy generation is highlighted. Formulation also consists of thermal radiation, heat generation and mixed convection. Brownian motion and thermophoresis effects through double diffusion concepts in energy and concentration expressions are modeled in correct manner. The resulting problems are computed by modern approach known as Optimal homotopy analysis method (OHAM). This technique is frequently used for solving non-linear differential equations encountered in applied science and engineering. Total square residual error is computed. Velocity enhances for higher values of second grade and magnetic parameters. Higher estimation of thermal relaxation and solutal concentration parameter both temperature concentration are reducing. Physical arguments for important parameters of interest are organized.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available