4.7 Article

(1,2-Azole)bis(bipyridyl)ruthenium(II) Complexes: Electrochemistry, Luminescent Properties, And Electro- And Photocatalysts for CO2 Reduction

Journal

INORGANIC CHEMISTRY
Volume 60, Issue 2, Pages 693-705

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.inorgchem.0c02716

Keywords

-

Funding

  1. Junta de Castilla y Leon [VA130618]
  2. UVa
  3. Spanish MINECO, Spain [PGC2018-099470-B-I00]
  4. Consejeria de Educacion y Cultura
  5. Fondo Social Europeo [BU263P18]
  6. National Science Foundation CAREER Grant [CHE-1652606]

Ask authors/readers for more resources

New cis-(1,2-azole)-aquo bis(2,2'-bipyridyl)-ruthenium(II) complexes were synthesized and characterized, with photophysical and electrochemical studies revealing their catalytic activity in CO2 reduction. The photocatalytic experiments demonstrated high turnover numbers for CO and formic acid production under specific conditions.
New cis-(1,2-azole)-aquo bis(2,2'-bipyridyl)-ruthenium(II) (1,2-azole (az*H) = pzH (pyrazole), dmpzH (3,5-dimethylpyrazole), and indzH (indazole)) complexes are synthesized via chlorido abstraction from cis-[Ru(bipy)(2)Cl(az*H)]OTf. The latter are obtained from cis-[Ru(bipy)(2)Cl-2] after the subsequent coordination of the 1,2-azole. All the compounds are characterized by H-1, C-13, N-15 NMR spectroscopy as well as IR spectroscopy. Two chlorido complexes (pzH and indzH) and two aquo complexes (indzH and dmpzH) are also characterized by X-ray diffraction. Photophysical and electrochemical studies were carried out on all the complexes. The photophysical data support the phosphorescence of the complexes. The electrochemical behavior of all the complexes in an Ar atmosphere indicate that the oxidation processes assigned to Ru(II) -> Ru(III) occurs at higher potentials in the aquo complexes. The reduction processes under Ar lead to several waves, indicating that the complexes undergo successive electron-transfer reductions that are centered in the bipy ligands. The first electron reduction is reversible. The electrochemical behavior in CO2 media is consistent with CO2 electrocatalyzed reduction, where the values of the catalytic activity [i(cat)(CO2)/i(p)(Ar)] ranged from 2.9 to 10.8. Controlled potential electrolysis of the chlorido and aquo complexes affords CO and formic acid, with the latter as the major product after 2 h. Photocatalytic experiments in MeCN with [Ru(bipy)(3)]Cl-2 as the photosensitizer and TEOA as the electron donor, which were irradiated with >300 nm light for 24 h, led to CO and HCOOH as the main reduction products, achieving a combined turnover number (TONCO+HCOO-) as high as 107 for 2c after 24 h of irradiation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available