4.7 Article

Chemical Bath Deposition of ZnO Nanowires Using Copper Nitrate as an Additive for Compensating Doping

Journal

INORGANIC CHEMISTRY
Volume 60, Issue 3, Pages 1612-1623

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.inorgchem.0c03086

Keywords

-

Funding

  1. LabEx Minos [ANR-10-LABX-55-01]
  2. EquipEx IMPACT program [ANR-10-EQPX-33]
  3. French Research National Agency [ANR-17-CE09-0033, ANR-17-CE24-0003]
  4. French Research National Agency in the framework of the Investissement d'avenir program through the project CDP NEED [ANR-15-IDEX-02]

Ask authors/readers for more resources

The controlled incorporation of copper into ZnO nanowires using chemical bath deposition is explored, highlighting the formation mechanisms and competitive adsorption of Cu(II) and Zn(II) ions on the top facets of the ZnO nanowires. The study provides insights into the physicochemical processes and speciation of Cu and Zn ions during the CBD process, revealing the significance of both thermodynamic simulations and chemical analyses in understanding the incorporation of dopants.
The controlled incorporation of dopants like copper into ZnO nanowires (NWs) grown by chemical bath deposition (CBD) is still challenging despite its critical importance for the development of piezoelectric devices. In this context, the effects of the addition of copper nitrate during the CBD of ZnO NWs grown on Au seed layers are investigated in detail, where zinc nitrate and hexamethylenetetramine are used as standard chemical precursors and ammonia as an additive to tune the pH. By combining thermodynamic simulations with chemical and structural analyses, we show that copper oxide nanocrystals simultaneously form with ZnO NWs during the CBD process in the low-pH region associated with large supersaturation of Cu species. The Cu(II) and Zn(II) speciation diagrams reveal that both species show very similar behaviors, as they predominantly form either X2+ ions (with X = Cu or Zn) or X(NH3)(4)(2+) ion complexes, depending on the pH value. Owing to their similar ionic structures, Cu2+ and Cu(NH3)(4)(2+) ions preferentially formed in the low- and high-pH regions, respectively, are able to compete with the corresponding Zn2+ and Zn(NH3)(4)(2+) ions to adsorb on the c-plane top facets of ZnO NWs despite repulsive electrostatic interactions, yielding the significant incorporation of Cu. At the highest pH value, additional attractive electrostatic interactions between the Cu(NH3)(4)(2+) ion complexes and negatively charged c-plane top facets further enhance the incorporation of Cu into ZnO NWs. The present findings provide a deep insight into the physicochemical processes at work during the CBD of ZnO NWs following the addition of copper nitrate, as well as a detailed analysis of the incorporation mechanisms of Cu into ZnO NWs, which are considered beyond the only electrostatic forces usually driving the incorporation of dopants such as Al and Ga.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available