4.6 Article

Thermal, Near-Infrared Light, and Amine Solvent Triple-Responsive Recyclable Imine-Type Vitrimer: Shape Memory, Accelerated Photohealing/Welding, and Destructing Behaviors

Journal

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
Volume 59, Issue 50, Pages 21768-21778

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.iecr.0c04257

Keywords

-

Funding

  1. State Key Program of National Natural Science of China [51433008]
  2. National Natural Science Foundation of China [21978240, 21676217, 51673156]
  3. Fundamental Research Funds for the Central Universities [3102017jc01001]

Ask authors/readers for more resources

Currently, polyimine vitrimer is restricted by unitary functionality and poor responsiveness to external stimuli, thus showing limited potentials for broader applications as a kind of smart material. Herein, we reported a thermal, near-infrared light, and amine solvent triple-responsive polyimine vitrimer (ACAT-vitrimer) by incorporating oligoaniline into a traditional imine-type vitrimer through the polycondensation reaction of terephthaldehyde, m-xylylene diamine, and tris (2-aminoethyl) amine. The material exhibited superior mechanical properties, thermal stability, rheology, welding property, and recyclability. More interestingly, the ACAT vitrimer also demonstrated a unique photothermal conversion property. Compared with traditional hot-pressing method, the photoinduced shape memory behavior of the ACAT-vitrimer was much more controllable and efficient. Additionally, the ACAT-vitrimer exhibited accelerated photohealing/welding and complete destructing behaviors under the irradiation of near-infrared (NIR) light, which was reported for the first time as a kind of imine-based vitrimer. Such easy fabrication strategy combining dynamic covalent chemistry with a spatiotemporally controllable photothermal effect provided an efficient approach to convert the conventional imine-type vitrimer into stimulus-responsive materials for broader applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available