4.7 Article

Glucagon-Like Peptide 1 Receptor Activation Attenuates Platelet Aggregation and Thrombosis

Journal

DIABETES
Volume 65, Issue 6, Pages 1714-1723

Publisher

AMER DIABETES ASSOC
DOI: 10.2337/db15-1141

Keywords

-

Funding

  1. Canadian Institutes of Health Research [MOP 119540]
  2. Merck Canada (IISP) [40363]
  3. Heart and Stroke Foundation of Canada [T6757]
  4. Heart and Stroke Foundation, Ontario Provincial Office

Ask authors/readers for more resources

Short-term studies in subjects with diabetes receiving glucagon-like peptide 1 (GLP-1)-targeted therapies have suggested a reduced number of cardiovascular events. The mechanisms underlying this unexpectedly rapid effect are not known. We cloned full-length GLP-1 receptor (GLP-1R) mRNA from a human megakaryocyte cell line (MEG-01), and found expression levels of GLP-1Rs in MEG-01 cells to be higher than those in the human lung but lower than in the human pancreas. Incubation with GLP-1 and the GLP-1R agonist exenatide elicited a cAMP response in MEG-01 cells, and exenatide significantly inhibited thrombin-, ADP-, and collagen-induced platelet aggregation. Incubation with exenatide also inhibited thrombus formation under flow conditions in ex vivo perfusion chambers using human and mouse whole blood. In a mouse cremaster artery laser injury model, a single intravenous injection of exenatide inhibited thrombus formation in normoglycemic and hyperglycemic mice in vivo. Thrombus formation was greater in mice transplanted with bone marrow lacking a functional GLP-1R (Glp1r(-/-)) compared with those receiving wild-type bone marrow. Although antithrombotic effects of exenatide were partly lost in mice transplanted with bone marrow from Glp1r(-/-) mice, they were undetectable in mice with a genetic deficiency of endothelial nitric oxide synthase. The inhibition of platelet function and the prevention of thrombus formation by GLP-1R agonists represent potential mechanisms for reduced atherothrombotic events.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available