4.7 Article

Efficient photocatalysis of organic dyes under simulated sunlight irradiation by a novel magnetic CuFe2O4@porphyrin nanofiber hybrid material fabricated via self-assembly

Journal

FUEL
Volume 281, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2020.118655

Keywords

Magnetic CuFe2O4@porphyrin nanofibers; Photocatalytic materials; Photocatalyst; Dye degradation

Funding

  1. Vietnam National Foundation for Science and Technology Development (NAFOSTED) [104.05-2019.01]

Ask authors/readers for more resources

The main aim of this study was to synthesize an innovative magnetic CuFe2O4@porphyrin nanofiber hybrid material via one-step re-precipitation self-assembly of freebase-tetracarboxy-porphyrin (TCPP), in the presence of CuFe2O4 nanoparticles. The resultant hybrid materials were thoroughly characterized using scanning electron microscopy, energy-dispersive X-ray mapping, X-ray diffractometry, and Fourier-transform infrared, and UV-vis spectroscopy. Results showed well-integration of CuFe2O4 nanoparticles into TCPP nanofiber network, with the average size of CuFe2O4 being less than 100 nm and diameter and length of TCPP aggregate being approximately 20 nm and several mu m, respectively. The as-prepared hybrid material possessed strong magnetic properties with a saturated magnetization value of approximately 25 emu/g. This photocatalyst was highly efficient in the removal of rhodamine B (RhB) dye, with the rate constant reaching 2.1 x 10(-2) min(-1). This paper describes in detail a plausible photocatalytic mechanism for RhB removal by CuFe2O4@porphyrin nanofiber hybrid material.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available