4.7 Article

Effects of solution loss degree, reaction temperature, and high temperature heating on the thermal properties of metallurgical cokes

Journal

FUEL
Volume 283, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2020.118936

Keywords

Metallurgical coke; Thermal properties; Solution loss degree; Reaction temperature; High temperature heating

Funding

  1. National Natural Science Foundation of China [U1361212, U1760111, 51874136]
  2. Tangshan Science and Technology Bureau [18130209a]

Ask authors/readers for more resources

The study found that the correlation between the indices representing coke strength and reactivity in the new methods was significantly lower than that in the conventional NSC method. Coke strength after reaction was more susceptible to solution loss degree and reaction temperature compared to coke reactivity. Initial reaction temperature was found to be relatively independent of coke reactivity and strength after reaction.
In this work, the thermal properties of nineteen metallurgical cokes were measured using the conventional NSC method and three proposed methods to investigate the effects of solution loss degree, reaction temperature, and high temperature heating on the thermal properties. It was found that the linear negative correlations between the index representing coke strength after reaction and the index representing coke reactivity in the proposed methods similar to blast furnace conditions were significantly lower than that of coke strength after reaction (CSR) and coke reactivity index (CRI) in the NSC method. These results contradict the conventional viewpoint that the lower the coke reactivity, the higher the coke strength (CSRBF) after reaction in blast furnace. Compared with coke reactivity, coke strength after reaction was more susceptible to the differences in solution loss degree and reaction temperature. Therefore, the CSR index in the NSC method may lead to a large misjudgment of the quality of some cokes. The initial reaction temperature T, was relatively independent of coke reactivity and strength after reaction, and is a new index to characterize the thermal properties of coke. The significant decrease in the thermal strength of some cokes indicated that high temperature heating was an important factor in the characterization of coke thermal properties. This paper provides a reference for the comprehensive understanding and evaluation of the thermal properties of coke, and at the same time, lays a foundation for subsequent studies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available