4.3 Review

The corticospinal tract: Evolution, development, and human disorders

Journal

DEVELOPMENTAL NEUROBIOLOGY
Volume 77, Issue 7, Pages 810-829

Publisher

WILEY
DOI: 10.1002/dneu.22455

Keywords

pyramidal tract; axon guidance; mirror movements; development; movement disorders

Ask authors/readers for more resources

The corticospinal tract (CST) plays a major role in cortical control of spinal cord activity. In particular, it is the principal motor pathway for voluntary movements. Here, we discuss: (i) the anatomic evolution and development of the CST across mammalian species, focusing on its role in motor functions; (ii) the molecular mechanisms regulating corticospinal tract formation and guidance during mouse development; and (iii) human disorders associated with abnormal CST development. A comparison of CST anatomy and development across mammalian species first highlights important similarities. In particular, most CST axons cross the anatomical midline at the junction between the brainstem and spinal cord, forming the pyramidal decussation. Reorganization of the pattern of CST projections to the spinal cord during evolution led to improved motor skills. Studies of the molecular mechanisms involved in CST formation and guidance in mice have identified several factors that act synergistically to ensure proper formation of the CST at each step of development. Human CST developmental disorders can result in a reduction of the CST, or in guidance defects associated with abnormal CST anatomy. These latter disorders result in altered midline crossing at the pyramidal decussation or in the spinal cord, but spare the rest of the CST. Careful appraisal of clinical manifestations associated with CST malformations highlights the critical role of the CST in the lateralization of motor control. (c) 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 810-829, 2017

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available