4.6 Article

Human induced pluripotent stem cells (BIONi010-C) generate tight cell monolayers with blood-brain barrier traits and functional expression of large neutral amino acid transporter 1 (SLC7A5)

Journal

Publisher

ELSEVIER
DOI: 10.1016/j.ejps.2020.105577

Keywords

Blood-brain barrier; hIPSC; SLC-transporters; LAT1; LRP1; GLUT1; Drug delivery

Funding

  1. Lundbeck Foundation [R155-2013-14113]
  2. Helene and Viggo Bruuns Foundation
  3. Knud Hojgaards Foundation
  4. Oticon Foundation
  5. Torben and Alice Frimodts Foundation
  6. IM2PACT consortium under the Innovative Medicines Initiative (IMI) program

Ask authors/readers for more resources

This study investigated the differentiation of human induced pluripotent stem cells (hiPSCs) into brain capillary endothelial-like cells (BCEC) for potential use in drug delivery research. The results demonstrated that the BCEC monolayers exhibited properties of the blood-brain barrier, including barrier tightness, high dynamic range, and functional transport capabilities.
The barrier properties of the brain capillary endothelium, the blood-brain barrier (BBB) restricts uptake of most small and all large molecule drug compounds to the CNS. There is a need for predictive human in vitro models of the BBB to enable studies of brain drug delivery. Here, we investigated whether human induced pluripotent stem cell (hiPSC) line (BIONi010-C) could be differentiated to brain capillary endothelial- like cells (BCEC) and evaluated their potential use in drug delivery studies. BIONi010-C hIPSCs were differentiated according to established protocols. BCEC monolayers displayed transendothelial electrical resistance (TEER) values of 5,829 +/- 354 Omega.cm(2), a P-app,P-mannitol of 1.09 +/- 0.15 . 10(-6) cm.s(-1) and a P-app,P-diazepam of 85.7 +/- 5.9 . 10(-6) cm.s(-1). The P-diazepam/P-mannitol ratio of similar to 80, indicated a large dynamic passive permeability range. Monolayers maintained their integrity after medium exchange. Claudin-5, Occludin, Zonulae Occludens 1 and VE-Cadherin were expressed at the cell-cell contact zones. Efflux transporters were present at the mRNA level, but functional efflux of substrates was not detected. Transferrin-receptor (TFR), Low density lipoprotein receptor-related protein 1 (LRP1) and Basigin receptors were expressed at the mRNA-level. The presence and localization of TFR and LRP1 were verified at the protein level. A wide range of BBB-expressed solute carriers (SLC's) were detected at the mRNA level. The presence and localization of SLC transporters GLUT1 and LAT1 was verified at the protein level. Functional studies revealed transport of the LAT1 substrate [H-3]-L-Leucine and the LRP1 substrate angiopep-2. In conclusion, we have demonstrated that BIONi010-C-derived BCEC monolayers exhibited, BBB properties including barrier tightness and integrity, a high dynamic range, expression of some of the BBB receptor and transporter expression, as well as functional transport of LAT1 and LRP1 substrates. This suggests that BIONi010-C-derived BCEC monolayers may be useful for studying the roles of LAT-1 and LRP1 in brain drug delivery.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available