4.7 Article

Exploring the ability of dihydropyrimidine-5-carboxamide and 5-benzyl-2,4-diaminopyrimidine-based analogues for the selective inhibition of L. major dihydrofolate reductase

Journal

EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY
Volume 210, Issue -, Pages -

Publisher

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.ejmech.2020.112986

Keywords

Leishmania major DHFR; Human dihydrofolate reductase; Methotrexate mimics; Antileishmanials; Dihydropyrimidine-5-carboxamides; Benzyl-2,4-diaminopyrimidines

Funding

  1. Higher Education Commission Pakistan [5291/Federal/NRPU/RD/2016]
  2. NRPU [5291/Federal/NRPU/RD/2016]

Ask authors/readers for more resources

Efforts to find efficient therapeutic drug targets for leishmaniasis have focused on DHFR. This study aimed to design and synthesize selective antifolates targeting L. major, with compound 59 showing potent inhibition of the parasite. Selectivity for LmDHFR over human DHFR was demonstrated, with compounds 56 and 58 showing the highest selectivity.
To tackle leishmaniasis, search for efficient therapeutic drug targets should be pursued. Dihydrofolate reductase (DHFR) is considered as a key target for the treatment of leishmaniasis. In current study, we are interested in the design and synthesis of selective antifolates targeting DHFR from L. major. We focused on the development of new antifolates based on 3,4-dihydropyrimidine-2-one and 5-(3,5-dimethoxybenzyl)pyrimidine-2,4-diamine motif. Structure activity relationship (SAR) studies were performed on 4-phenyl ring of dihydropyrimidine (26-30) template. While for 5-(3,5-dimethoxybenzyl) pyrimidine-2,4-diamine, the impact of different amino acids (valine, tryptophan, phenylalanine, and glutamic acid) and two carbon linkers were explored (52-59). The synthesized compounds were assayed against LmDHFR. Compound 59 with the IC50 value of 0.10 mu M appeared as potent inhibitors of L. major. Selectivity for parasite DHFR over human DHFR was also determined. Derivatives 55-59 demonstrated excellent selectivity for LmDHFR. Highest selectivity for LmDHFR was shown by compounds 56 (SI = 84.5) and 58 (SI = 87.5). Compounds Antileishmanial activity against L. major and L. donovani promastigotes was also performed. To explore the interaction pattern of the synthesized compounds with biological macromolecules, the docking studies were carried out against homology modelled LmDHFR and hDHFR targets. (C) 2020 Elsevier Masson SAS. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available