4.7 Article

Drone data reveal heterogeneity in tundra greenness and phenology not captured by satellites

Journal

ENVIRONMENTAL RESEARCH LETTERS
Volume 15, Issue 12, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/1748-9326/abbf7d

Keywords

Arctic tundra; vegetation monitoring; landscape phenology; satellite; drones; UAV and RPAS; NDVI; scale

Funding

  1. NERC through the ShrubTundra standard grant [NE/M016323/1]
  2. NERC E3 Doctoral Training Partnership PhD studentship [NE/L002558/1]
  3. National Geographic Society [CP-061R-17]
  4. Parrot Climate Innovation Grant
  5. Aarhus University Research Foundation
  6. European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement [754513]
  7. NERC [738.1115]
  8. NERC Geophysical Equipment Facility [GEF 1063, 1069]
  9. NERC [NE/M016323/1] Funding Source: UKRI

Ask authors/readers for more resources

Data across scales are required to monitor ecosystem responses to rapid warming in the Arctic and to interpret tundra greening trends. Here, we tested the correspondence among satellite- and drone-derived seasonal change in tundra greenness to identify optimal spatial scales for vegetation monitoring on Qikiqtaruk-Herschel Island in the Yukon Territory, Canada. We combined time-series of the Normalised Difference Vegetation Index (NDVI) from multispectral drone imagery and satellite data (Sentinel-2, Landsat 8 and MODIS) with ground-based observations for two growing seasons (2016 and 2017). We found high cross-season correspondence in plot mean greenness (drone-satellite Spearman's rho 0.67-0.87) and pixel-by-pixel greenness (drone-satellite R-2 0.58-0.69) for eight one-hectare plots, with drones capturing lower NDVI values relative to the satellites. We identified a plateau in the spatial variation of tundra greenness at distances of around half a metre in the plots, suggesting that these grain sizes are optimal for monitoring such variation in the two most common vegetation types on the island. We further observed a notable loss of seasonal variation in the spatial heterogeneity of landscape greenness (46.2%-63.9%) when aggregating from ultra-fine-grain drone pixels (approx. 0.05 m) to the size of medium-grain satellite pixels (10-30 m). Finally, seasonal changes in drone-derived greenness were highly correlated with measurements of leaf-growth in the ground-validation plots (mean Spearman's rho 0.70). These findings indicate that multispectral drone measurements can capture temporal plant growth dynamics across tundra landscapes. Overall, our results demonstrate that novel technologies such as drone platforms and compact multispectral sensors allow us to study ecological systems at previously inaccessible scales and fill gaps in our understanding of tundra ecosystem processes. Capturing fine-scale variation across tundra landscapes will improve predictions of the ecological impacts and climate feedbacks of environmental change in the Arctic.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available