4.7 Article

Greater aridity increases the magnitude of urban nighttime vegetation-derived air cooling

Journal

ENVIRONMENTAL RESEARCH LETTERS
Volume 16, Issue 3, Pages -

Publisher

IOP Publishing Ltd
DOI: 10.1088/1748-9326/abdf8a

Keywords

urban heat; vegetation cooling; ecosystem service; aridity; air temperature

Funding

  1. US National Science Foundation [CBET-1444758, CNH-1924288]

Ask authors/readers for more resources

This study shows that urban vegetation can decrease nighttime temperatures, with the cooling effect increasing with aridity. The cooling magnitude varies among different cities, with a more significant effect during heat waves.
High nighttime urban air temperatures increase health risks and economic vulnerability of people globally. While recent studies have highlighted nighttime heat mitigation effects of urban vegetation, the magnitude and variability of vegetation-derived urban nighttime cooling differs greatly among cities. We hypothesize that urban vegetation-derived nighttime air cooling is driven by vegetation density whose effect is regulated by aridity through increasing transpiration. We test this hypothesis by deploying microclimate sensors across eight United States cities and investigating relationships of nighttime air temperature and urban vegetation throughout a summer season. Urban vegetation decreased nighttime air temperature in all cities. Vegetation cooling magnitudes increased as a function of aridity, resulting in the lowest cooling magnitude of 1.4 degrees C in the most humid city, Miami, FL, and 5.6 degrees C in the most arid city, Las Vegas, NV. Consistent with the differences among cities, the cooling effect increased during heat waves in all cities. For cities that experience a summer monsoon, Phoenix and Tucson, AZ, the cooling magnitude was larger during the more arid pre-monsoon season than during the more humid monsoon period. Our results place the large differences among previous measurements of vegetation nighttime urban cooling into a coherent physiological framework dependent on plant transpiration. This work informs urban heat risk planning by providing a framework for using urban vegetation as an environmental justice tool and can help identify where and when urban vegetation has the largest effect on mitigating nighttime temperatures.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available