4.7 Article

Nanocomposites of graphene and zirconia for adsorption of organic-arsenic drugs: Performances comparison and analysis of adsorption behavior

Journal

ENVIRONMENTAL RESEARCH
Volume 195, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.envres.2021.110752

Keywords

Organic-arsenic; Nanocomposites; Graphene; Zirconia; Crystal phases

Funding

  1. NSFC [21477082]

Ask authors/readers for more resources

The nanocomposites of zirconia nanoparticles with different crystal phases exhibited varying adsorption capacities for 3-NHPAA. The monoclinic phase of zirconia showed superior adsorption performance with a wider pH range. Adsorption followed pseudo-second order kinetics and Langmuir isotherm, and was found to be endothermic and spontaneous.
3-Nitro-4-hydroxy-phenylarsonic acid (3-NHPAA), an organic-arsenic compound, as one of widely used antibacterial veterinary drug, has greatly attracted the attention due to its potential threats on ecological environment. A series of the nanocomposites of zirconia nanoparticles with crystal phases (pure monoclinic, pure tetragonal and mixed phase (monoclinic + tetragonal)) anchored on reduced graphene oxide were produced through managing the concentration of triethanolamine solution and the reaction time. The effects of the crystal phases of the zirconia in the structure of the nanocomposites were played a key role in the adsorption performances of the 3-NHPAA. Experiment data identified the nanocomposites with monoclinic phase of zirconia excelled at the adsorption of the 3-NHPAA with a higher adsorption capacity up to 207.2 mg g(-1). The uptake of the 3-NHPAA by the three nanocomposites was implemented within 60 min and highly pH-dependent which illustrated electrostatic attraction between them as a main mechanism during the adsorption process. A wider pH range (3.8-8.8) for the uptake of the 3-NHPAA by the nanocomposites with the monoclinic phase of zirconia was obtained compared with the nanocomposites containing tetragonal phase (3.8-5.9) or the mixed phase (3.8-7.1) of zirconia. The adsorption of the 3-NHPAA was well described by the pseudo-second order kinetic and Langmuir equations. The thermodynamic parameters suggested that the adsorption of the 3-NHPAA over the three nanocomposites was endothermic and spontaneous in nature. In summary, the nanocomposites of reduced graphene oxide and monoclinic phase of zirconia nanoparticles as an adsorbent were better to the adsorption of the 3-NHPAA.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available