4.4 Article

Identifying domains of EFHC1 involved in ciliary localization, ciliogenesis, and the regulation of Wnt signaling

Journal

DEVELOPMENTAL BIOLOGY
Volume 411, Issue 2, Pages 257-265

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ydbio.2016.01.004

Keywords

Ciliogenesis; Wnt signaling; Xenopus embryo; Myoclonic epilepsy

Funding

  1. NIH [3R01GM074746-06W1]

Ask authors/readers for more resources

EFHC1 encodes a ciliary protein that has been linked to Juvenile Myoclonic Epilepsy. In ectodermal ex plants, derived from Xenopus laevis embryos, the morpholino-mediated down-regulation of EFHC1b inhibited multiciliated cell formation. In those ciliated cells that did form, axoneme but not basal body formation was inhibited. EFHC1b morphant embryos displayed defects in central nervous system (CNS) and neural crest patterning that were rescued by a EFHC1b-GFP chimera. EFHC1b-GFP localized to ciliary axonemes in epidermal, gastrocoele roof plate, and neural tube cells. In X. laevis there is a link between Wnt signaling and multiciliated cell formation. While down-regulation of EFHC1b led to similar to 2-fold increase in the activity of the beta-catenin/Wnt-responsive TOPFLASH reporter, EFHC1b-GFP did not inhibit beta-catenin activation of TOPFLASH. Wnt8a RNA levels were increased in EFHC1b morphant ectodermal explants and intact embryos, analyzed prior to the on-set of ciliogenesis. Rescue of the EFHC1b MO's ciliary axonemal phenotypes required the entire protein; in contrast, the EFHC1b morpholino's Wnt8a, CNS, and neural crest phenotypes were rescued by a truncated form of EFHC1b. The EFHC1b morpholino's Wnt8a phenotype was also rescued by the injection of RNAs encoding secreted Wnt inhibitors, suggesting that these phenotypes are due to effects on Wnt signaling, rather than the loss of cilia, an observation of potential relevance to understanding EFHC1's role in human neural development. (C) 2016 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available