4.6 Article

EmhR is an indole-sensing transcriptional regulator responsible for the indole-induced antibiotic tolerance in Pseudomonas fluorescens

Journal

ENVIRONMENTAL MICROBIOLOGY
Volume 23, Issue 4, Pages 2054-2069

Publisher

WILEY
DOI: 10.1111/1462-2920.15354

Keywords

-

Categories

Funding

  1. National Natural Science Foundation of China [31971422, 31770535]

Ask authors/readers for more resources

The study revealed that indole enhances antibiotic tolerance in Pseudomonas, affecting the expression of genes encoding efflux pumps and regulated by a transcription factor. Indole was shown to influence the structure of the transcription factor, leading to altered DNA binding and antibiotic tolerance.
Indole is well known as an interspecies signalling molecule to modulate bacterial physiology; however, it is not clear how the indole signal is perceived and responded to by plant growth promoting rhizobacteria (PGPR) in the rhizosphere. Here, we demonstrated that indole enhanced the antibiotic tolerance of Pseudomonas fluorescens 2P24, a PGPR well known for its biocontrol capacity. Proteomic analysis revealed that indole influenced the expression of multiple genes including the emhABC operon encoding a major multidrug efflux pump. The expression of emhABC was regulated by a TetR-family transcription factor EmhR, which was demonstrated to be an indole-responsive regulator. Molecular dynamics simulation showed that indole allosterically affected the distance between the two DNA-recognizing helices within the EmhR dimer, leading to diminished EmhR-DNA interaction. It was further revealed the EmhR ortholog in Pseudomonas syringae was also responsible for indole-induced antibiotic tolerance, suggesting this EmhR-dependent, indole-induced antibiotic tolerance is likely to be conserved among Pseudomonas species. Taken together, our results elucidated the molecular mechanism of indole-induced antibiotic tolerance in Pseudomonas species and had important implications on how rhizobacteria sense and respond to indole in the rhizosphere.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available