4.6 Article

Effect of soil organic matter on the plant uptake of perfluorooctanoic acid (PFOA) and perfluorooctanesulphonic acid (PFOS) in lettuce on granular activated carbon-applied soil

Journal

ENVIRONMENTAL GEOCHEMISTRY AND HEALTH
Volume 43, Issue 5, Pages 2193-2202

Publisher

SPRINGER
DOI: 10.1007/s10653-020-00793-y

Keywords

Soil organic matter (SOM); Carbonaceous adsorbent; Perfluorooctanoic acid (PFOA); Perfluorooctanesulphonic acid (PFOS); Lettuce; Plant uptake

Funding

  1. Research Program for Agricultural Science & Technology Development, National Academy of Agricultural Science, Rural Development Administration [PJ01332102]
  2. Ministry of Science and ICT (MSIT) through the National Research Foundation (NRF) of Korea, Republic of Korea [NRF-2019R1A4A1029125]

Ask authors/readers for more resources

The presence of PFOA and PFOS in crops poses a significant concern for food safety, with soil organic matter content affecting their adsorption and uptake in water, soil, and crops. The use of GAC-treated soils can effectively reduce the plant uptake factor for PFOA and PFOS, with the content of SOM playing a crucial role in the remediation process of PFOA- and PFOS-contaminated farmland soil using carbonaceous adsorbent.
The presence of perfluorooctanoic acid (PFOA) and perfluorooctanesulphonic acid (PFOS) in crops is an important consideration for food safety. The soil organic matter (SOM) content may affect the adsorption potential of PFOA and PFOS in water and soil and their subsequent uptake in crops. To better understand these dynamics, the adsorption and uptake of PFOA and PFOS in lettuce were investigated using granular activated carbon (GAC)-treated soils with varying SOM content. The adsorption potential of GAC was investigated, with maximum adsorption capacities for PFOA and PFOS calculated to be 9.091 mg g(-1) and 27.778 mg g(-1), respectively. These values decreased to 5.208 mg g(-1) and 17.241 mg g(-1), respectively, after the addition of 0.04 wt% humic acid. The average plant uptake factor (PUF) in low and high perfluoroalkyl and polyfluoroalkyl acid (PFAA)-contaminated soils with 4.0 wt% SOM was restricted to 0.353 for PFOA and 0.108 for PFOS. The PUFs were approximately two times lower than those for soil with 2.6 wt% SOM. Addition of 1 wt% GAC to the soil successfully reduced the PUF by up to 99.4%, with values of 0.006 (PFOA) and 0.005 (PFOS) in 2.6 wt% SOM-treated soil and 0.079 (PFOA) and 0.023 (PFOS) in 4.0 wt% SOM-treated soil. Although the PUF in the GAC-treated soil was drastically decreased, the PUF of the soil with 4.0 wt% SOM was at least four times higher than that with 2.6 wt% SOM. Therefore, SOM content is an important consideration in the remediation of PFOA- and PFOS-contaminated farmland soil using carbonaceous adsorbent.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available