4.5 Review

Focussed Review of Utilization of Graphene-Based Materials in Electron Transport Layer in Halide Perovskite Solar Cells: Materials-Based Issues

Journal

ENERGIES
Volume 13, Issue 23, Pages -

Publisher

MDPI
DOI: 10.3390/en13236335

Keywords

perovskite solar cells (PSCs); electron transport layer (ETL); graphene-based materials (GBMs)

Categories

Funding

  1. Australian Government Research Training Program (RTP) Scholarship
  2. Chungnam National University
  3. Australian Government through the Australian Renewable Energy Agency (ARENA)

Ask authors/readers for more resources

The present work applies a focal point of materials-related issues to review the major case studies of electron transport layers (ETLs) of metal halide perovskite solar cells (PSCs) that contain graphene-based materials (GBMs), including graphene (GR), graphene oxide (GO), reduced graphene oxide (RGO), and graphene quantum dots (GQDs). The coverage includes the principal components of ETLs, which are compact and mesoporous TiO2, SnO2, ZnO and the fullerene derivative PCBM. Basic considerations of solar cell design are provided and the effects of the different ETL materials on the power conversion efficiency (PCE) have been surveyed. The strategy of adding GBMs is based on a range of phenomenological outcomes, including enhanced electron transport, enhanced current density-voltage (J-V) characteristics and parameters, potential for band gap (E-g) tuning, and enhanced device stability (chemical and environmental). These characteristics are made complicated by the variable effects of GBM size, amount, morphology, and distribution on the nanostructure, the resultant performance, and the associated effects on the potential for charge recombination. A further complication is the uncertain nature of the interfaces between the ETL and perovskite as well as between phases within the ETL.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available