4.7 Article

Identification and in silico modeling of enhancers reveals new features of the cardiac differentiation network

Journal

DEVELOPMENT
Volume 143, Issue 23, Pages 4533-4542

Publisher

COMPANY BIOLOGISTS LTD
DOI: 10.1242/dev.140822

Keywords

Bagpipe; Nkx3.2; Drosophila heart; SVM modeling; Chromatin landscape; Differentiation network; Enhancer

Funding

  1. ERASysBio+ initiative
  2. European Molecular Biology Organization (EMBO)
  3. Deutsche Forschungsgemeinschaft [FU 750/1-2]

Ask authors/readers for more resources

Developmental patterning and tissue formation are regulated through complex gene regulatory networks (GRNs) driven through the action of transcription factors (TFs) converging on enhancer elements. Here, as a point of entry to dissect the poorly defined GRN underlying cardiomyocyte differentiation, we apply an integrated approach to identify active enhancers and TFs involved in Drosophila heart development. The Drosophila heart consists of 104 cardiomyocytes, representing less than 0.5% of all cells in the embryo. By modifying BiTS-ChIP for rare cells, we examined H3K4me3 and H3K27ac chromatin landscapes to identify active promoters and enhancers specifically in cardiomyocytes. These in vivo data were complemented by a machine learning approach and extensive in vivo validation in transgenic embryos, which identified many new heart enhancers and their associated TF motifs. Our results implicate many new TFs in late stages of heart development, including Bagpipe, an Nkx3.2 ortholog, which we show is essential for differentiated heart function.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available