4.7 Review

Accumulation and cellular toxicity of engineered metallic nanoparticle in freshwater microalgae: Current status and future challenges

Journal

ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY
Volume 208, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ecoenv.2020.111662

Keywords

Algae; Bioaccumulation; Cyanobacteria; Ecosystem; Food web; Nanoparticles

Funding

  1. Department of Biotechnology
  2. New Delhi, India

Ask authors/readers for more resources

Research has shown that metallic nanoparticles exhibit toxicity to algae but are less toxic compared to their corresponding metal ions. These nanoparticles can be transferred through aquatic food webs, but further investigation is needed on their internalization and toxicity mechanisms for algae.
Metal nanoparticles (MNPs) are employed in a variety of medical and non-medical applications. Over the past two decades, there has been substantial research on the impact of metallic nanoparticles on algae and cyanobacteria, which are at the base of aquatic food webs. In this review, the current status of our understanding of mechanisms of uptake and toxicity of MNPs and metal ions released from MNPs after dissolution in the surrounding environment were discussed. Also, the trophic transfer of MNPs in aquatic food webs was analyzed in this review. Approximately all metallic nanoparticles cause toxicity in algae. Predominantly, MNPs are less toxic compared to their corresponding metal ions. There is a sufficient evidence for the trophic transfer of MNPs in aquatic food webs. Internalization of MNPs is indisputable in algae, however, mechanisms of their transmembrane transport are inadequately known. Most of the toxicity studies are carried out with solitary species of MNPs under laboratory conditions rarely found in natural ecosystems. Oxidative stress is the primary toxicity mechanism of MNPs, however, oxidative stress seems a general response predictable to other abiotic stresses. MNP-specific toxicity in an algal cell is yet unknown. Lastly, the mechanism of MNP internalization, toxicity, and excretion in algae needs to be understood carefully for the risk assessment of MNPs to aquatic biota.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available