4.7 Article

Sulfur supply reduces barium toxicity in Tanzania guinea grass (Panicum maximum) by inducing antioxidant enzymes and proline metabolism

Journal

ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY
Volume 208, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ecoenv.2020.111643

Keywords

Guaiacol peroxidase; Phytotoxicity; Malondialdehyde; Superoxide dismutase

Funding

  1. Research Foundation of the State of S ~ao Paulo -FAPESP [20624-4]
  2. Brazilian National Research Council -CNPq [306403, 2013-7]

Ask authors/readers for more resources

The study showed that supplemental sulfur supply can mitigate barium toxicity in Tanzania guinea grass, mainly by improving superoxide dismutase and guaiacol peroxidase activities, and proline metabolism.
Sulfur (S) can play essential roles in protecting plants against abiotic stress, including heavy metal toxicity. However, the effect of this nutrient on plants exposed to barium (Ba) is still unknown. This study was designed to evaluate the S supply on oxidative stress and the antioxidant system of Tanzania guinea grass under exposure to Ba, grown in a nutrient solution under greenhouse conditions. It was studied the influence of S/Ba combinations in nutrient solution on oxidative stress indicators (hydrogen peroxide, malondialdehyde, and proline) and antioxidant enzyme activities (superoxide dismutase, catalase, ascorbate peroxidase, guaiacol peroxidase, and glutathione reductase). The treatments consisted in thirteen S/Ba combinations in the nutrient solution (0.1/0.0; 0.1/5.0; 0.1/20.0; 1.0/2.5; 1.0/10.0; 1.9/0.0 control; 1.9/5.0; 1.9/20.0; 2.8/2.5; 2.8/10.0; 3.7/0.0; 3.7/5.0 and 3.7/20.0 mM of S and Ba, respectively). The plants were grown for two growth periods, which consisted of fourteen days of S supply and the eight days of Ba exposure each one. The severe S deficiency decreased the superoxide dismutase activity, regardless of Ba exposure in recently expanded leaves and culms plus sheaths. However, supplemental S supply (above 1.9 mM S, which corresponds to S supply adequate to plant growth) it improved the superoxide dismutase activity in these tissues under high Ba concentrations. Conversely, the severe S deficiency increased the activities of catalase, ascorbate peroxidase, and glutathione reductase in grass leaves slightly, without Ba exposure influence. It was observed that the supplemental S supply also induced the guaiacol peroxidase activity and proline production in culms plus sheaths under high Ba rates, showing values until 2.5 and 3.1 folds higher than the control treatment, respectively. In plants under exposure to 20.0 mM Ba, the supplemental S supply decreased the malondialdehyde content in culms plus sheaths in 17% compared to 1.9 mM S. These results indicate that supplemental S supply can mitigate Ba toxicity in Tanzania guinea grass, mainly by improving superoxide dismutase and guaiacol peroxidase activities, and proline metabolism.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available