4.7 Article

Effects of cadmium on osteoblast cell line: Exportin 1 accumulation, p-JNK activation, DNA damage and cell apoptosis

Journal

ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY
Volume 208, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ecoenv.2020.111668

Keywords

Cadmium; Apoptosis; JNK; Exportin 1; Caspase; MC3T3-E1

Ask authors/readers for more resources

Cadmium toxicity on bone involves factors such as reduced cell viability, inhibition of osteoblast-related proteins, decreased alkaline phosphatase activity, DNA damage induction, and promotion of apoptosis. Mechanisms include Exportin-1 accumulation, JNK phosphorylation, and activation of Caspase-dependent pathways.
Cadmium is an environmental metal pollutant that has been a focus of research in recent years, which is reported to cause bone disease; however, its skeletal toxicity and the mechanism involved are not yet fully known. Therefore, this study used MC3T3-E1 subclone 14 cells to determine the mechanism of cadmium toxicity on bone. Cadmium chloride (Cd) significantly reduced cell viability in a concentration-dependent manner. Exposure to Cd inhibited osteoblast-related proteins (Runx2, Col-1, STC2) and decreased alkaline phosphatase (ALP) activity. Cd caused Exportin-1 accumulation and induced DNA damage. Cd significantly down-regulated caspase 9 and induced cleaved-PARP, cleaved-caspase 3 protein level. Treatment with JNK inhibitor, SP600125, suppressed cadmium-induced elevation in the ratio of phosphorylation of JNK to JNK. Inhibition of caspase with pan-caspase inhibitor, Z-VAD-FMK, prevented MC3T3-E1 subclone 14 cells from cadmium-induced reduction of Runx2, STC2, caspase 9, and accumulation of cleaved PARP and cleaved caspase 3. Cd-induced cell survival enhanced by SP600125 but rescued by Z-VAD-FMK or KPT-335. These results suggest that cadmium cytotoxicity on bone involved exportin 1 accumulation, phosphorylation of JNK, induction of DNA damage and proapoptosis, which was induced by activation of caspase-dependent pathways.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available