4.7 Article

Investigation of factors affecting phytoremediation of multi-elements polluted calcareous soil using Taguchi optimization

Journal

ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY
Volume 207, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ecoenv.2020.111315

Keywords

Plant type; EDTA; Surfactant; Potentially toxic elements; Remediation; Taguchi

Ask authors/readers for more resources

This study investigated the effects of different biological and chemical factors on the phytoremediation of zinc, lead, cadmium, and nickel in contaminated soils using the Taguchi optimization method. The results showed that plant type was the most influential factor on the remediation effectiveness.
Growing environmental concern regarding multi elements-contaminated soils reveals the necessity of paying more attention to environmentally friendly remediation techniques such as phytoremediation. A large number of factors influences phytoremediation of potentially toxic elements (PTEs) and investigation on a variety of these factors need appropriate statistical approaches such as Taguchi optimization which effectively decreases time and cost of experiments. In the present study, based on the Taguchi optimization method, the effects of several biological (plant type and mycorrhizal fungi (AMF)) and chemical (chelating agents, surfactants and organic acids) factors, on the phytoremediation of soils contaminated with zinc (Zn), lead (Pb), cadmium (Cd) and nickel (Ni) were investigated. The goal was to find out the most effective factors as well as the best level for each factor. The values of dry weights in roots and aerial parts of the studied plants were in orders of maize > sorghum > sunflower and sorghum > maize > sunflower, respectively. AMF was the main factor in increasing dry weight of shoots. Inoculation of AMF caused increases in root and shoot uptake of some PTEs. Results: showed that phytoremediation of PTEs is element-dependent; as Zn showed the highest translocation factor (TF) and bioconcentration factor (BCF) values, while Ni showed the lowest ones and the intermediate values belonged to Pb and Cd. These results show the diverse distribution of elements in plant parts, as Zn and Ni were mostly accumulated in shoot and root, respectively. Although different factors caused impacts on phy-toremediation criteria, the role of plant type in the phytoremediation of PTEs was at the first rank. Mean TF of PTEs in sunflower was 6.3 times that of maize. Sunflower showed high TF value for the four elements and translocated most of the PTEs from root to the aerial parts demonstrating phytoextraction as the main mechanism in this plant. Maize and sorghum, however, showed low TF and accumulated most of PTEs in their roots revealing phytostabilization as the main mechanism. In general, it can be concluded that plant type was the most influential factor in the phytoremediation of PTEs followed by EDTA and AMF. Taguchi optimization revealed the appropriateness and significance of different chemical and biological treatments on phytoremediation criteria of different elements.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available