4.0 Article

Continuous wavelet transform analysis of ERG in patients with diabetic retinopathy

Journal

DOCUMENTA OPHTHALMOLOGICA
Volume 142, Issue 3, Pages 305-314

Publisher

SPRINGER
DOI: 10.1007/s10633-020-09805-9

Keywords

Continuous wavelet transform; Diabetic retinopathy; Dominant frequency; Electroretinogram

Categories

Funding

  1. Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences

Ask authors/readers for more resources

The study compared time and time-frequency-domain analysis in evaluating ERGs in subjects with NPDR, finding that implicit times of b-waves were significantly increased, and amplitudes of a- and b-wave were significantly decreased in the NPDR group.
Purpose Diabetic retinopathy (DR) is one of the leading causes of blindness worldwide. Non-proliferative diabetic retinopathy (NPDR) is a stage of the disease that contains morphological and functional disruption of the retinal vasculature and dysfunction of retinal neurons. This study aimed to compare time and time-frequency-domain analysis in the evaluation of electroretinograms (ERGs) in subjects with NPDR. Method The ERG responses were recorded in 16 eyes from 12 patients with NPDR and 24 eyes from 12 healthy subjects as the control group. The implicit time, amplitude, and time-frequency-domain parameters of photopic and scotopic ERGs were analyzed. Results The implicit times of b-waves in the dark-adapted 10.0 (P = 0.0513) and light-adapted 3.0 (P = 0.0414) were significantly increased in the NPDR group. The amplitudes of a- and b-wave showed a significantly decreased dark-adapted 10.0 (P = 0.0212; P = 0.0133) and light-adapted 3.0 (P = 0.0517; P = 0.0021) ERG of the NPDR group. The Cohen's d effect size had higher values in the amplitude of dark-adapted 10.0 b-wave (|d|= 1.8058) and amplitude of light-adapted 3.0 b-wave (|d|= 1.9662). The CWT results showed that the frequency ranges of the dominant components in dark-adapted 10.0 and light-adapted 3.0 ERG were decreased in the NPDR group compared to the healthy group (P < 0.05). The times associated with the NDPR group's dominant components were increased compared to normal eyes in both dark-adapted 10.0 and light-adapted 3.0 ERG (P < 0.05). All Cohen's d effect sizes of the implicit times and dominant frequency components were on a large scale (|d|> 1). Conclusion These findings suggest that the time and time-frequency parameters of both photopic and scotopic ERGs can be good indicators for DR. However, time-frequency-domain analysis could present more information might be helpful in the assessment of the DR severity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available