4.6 Article

Liraglutide and sitagliptin have no effect on intestinal microbiota composition: A 12-week randomized placebo-controlled trial in adults with type 2 diabetes

Journal

DIABETES & METABOLISM
Volume 47, Issue 5, Pages -

Publisher

MASSON EDITEUR
DOI: 10.1016/j.diabet.2021.101223

Keywords

Dipeptidyl peptidase 4; DPP-4; Intestinal microbiota; GLP-1; Glucagon-like peptide 1

Funding

  1. European Commission [282521]

Ask authors/readers for more resources

The study aimed to investigate the effects of GLP-1 receptor agonists and DPP-4 inhibitors on the intestinal microbiota in adults with type 2 diabetes. Results showed that these agents did not affect the diversity of the intestinal microbiota, nor were changes in microbial composition related to clinical parameters.
Aim: Preclinical data suggest that treatment with either glucagon-like peptide (GLP)-1 receptor agonists or dipeptidyl peptidase (DPP)-4 inhibitors could change the intestinal microbiome and thereby contribute to their beneficial (cardio)metabolic effects. Therefore, our study aimed to investigate the effects of these agents on microbiota composition in adults with type 2 diabetes (T2D). Methods: A total of 51 adults with T2D (mean +/- SD: age 62.8 +/- 6.9 years, BMI 31.8 +/- 4.1 kg/m(2), HbA(1c) 7.3 +/- 0.6%) treated with metformin and/or sulphonylureas were included in the 12-week randomized, double-blind trial. Patients were given the GLP-1 receptor agonist liraglutide (1.8 mg sc) or the DPP-4 inhibitor sitagliptin (100 mg), or matching placebos, once daily for 12 weeks. Faecal samples were collected at baseline and at 12 weeks after the start of the intervention. Microbiota analyses were performed by 16S rRNA gene-sequencing analysis. Bile acids were measured in faeces and plasma. Results: Liraglutide decreased HbA(1c) by 1.3% (95% CI: -1.7 to -0.9) and tended to reduce body weight (-1.7 kg, 95% CI: -3.6 to 0.3), but increased faecal secondary bile acid deoxycholic acid. Sitagliptin lowered HbA(1c) by 0.8% (95% CI: -1.4 to -0.4) while body weight remained stable (-0.8 kg, 95% CI: -2.7 to 1.0), but increased faecal levels of cholic acid, chenodeoxycholic acid and ursodeoxycholic acid. However, neither liraglutide nor sitagliptin affected either alpha or beta diversity of the intestinal microbiota, nor were changes in microbial composition related to clinical parameters. Conclusion: These data suggest that the beneficial effects of liraglutide and sitagliptin on glucose metabolism, body weight and bile acids, when used as add-on therapies to metformin or sulphonylureas, are not linked to changes in the intestinal microbiota (NCT01744236). (C) 2021 The Authors. Published by Elsevier Masson SAS.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available