4.7 Article

A consistent phase field model for hydraulic fracture propagation in poroelastic media

Journal

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cma.2020.113396

Keywords

Hydraulic fracture; Phase field method; Porous media; Natural fracture; Perforation

Funding

  1. National Science and Technology Major Project of China [2016ZX05002005-006]
  2. Sichuan Science and technology, China [2020JDJQ0059]
  3. China Scholarships Council [201808510203]

Ask authors/readers for more resources

We present a novel phase field method for modeling hydraulic fracture propagation in poroelastic media. In this approach, a new phase field evolution equation is derived to account for damage dependent poro-elastic parameters (Biot's coefficient, Biot's modulus and porosity). The fluid flow obeys Darcy's seepage law in the entire domain including the damage zone, where the rock permeability is assumed to be anisotropic, following the maximum principal strain. The fully coupled problem is solved by a staggered scheme in which the mechanical equilibrium and fluid flow equations are linearized and solved using a Newton-Raphson(NR) method. Several numerical results are presented to investigate the effectiveness of the proposed formulation. First, stability and convergence of the method are verified on a set of benchmark problems considering different time steps and mesh sizes. Second, it is shown that if the poroelastic parameters are kept constant and do not change with the phase field parameter, i.e. reducing to standard phase field approaches in the literature, the model will tend to underestimate the fracture length and overestimate the pore pressure. Finally, we study the interaction of a propagating hydraulic fracture in porous media with inclined natural fractures, and simulate the hydraulic fracture propagation with different perforation phase angle. (C) 2020 Elsevier B.V. All reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available