4.7 Article

Giant Magnetoresistive Nanosensor Analysis of Circulating Tumor DNA Epidermal Growth Factor Receptor Mutations for Diagnosis and Therapy Response Monitoring

Journal

CLINICAL CHEMISTRY
Volume 67, Issue 3, Pages 534-542

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1093/clinchem/hvaa307

Keywords

-

Funding

  1. National Cancer Institute through Center for Cancer Nanotechnology Excellence on Translational Diagnostics (CCNE-TD) [U54CA199075]
  2. University of California Cancer Research Coordinating Committee [3-444964-34912]
  3. Personalized Cancer Therapy Gift Fund
  4. Pfizer
  5. Merck Co.
  6. Hengrui Therapeutics, Inc.
  7. Eureka Therapeutics, Inc.
  8. LabyRx Immunologic Therapeutics
  9. Genentech/Roche
  10. Merck

Ask authors/readers for more resources

The GMR assay demonstrated high diagnostic sensitivity and specificity in detecting EGFR mutations and monitoring treatment response noninvasively. After 2 weeks of therapy, predicted responders showed a higher rate of disappearance of ctDNA by GMR compared to predicted nonresponders, with 100% concordance with radiographic response.
BACKGROUND: Liquid biopsy circulating tumor DNA (ctDNA) mutational analysis holds great promises for precision medicine targeted therapy and more effective cancer management. However, its wide adoption is hampered by high cost and long turnaround time of sequencing assays, or by inadequate analytical sensitivity of existing portable nucleic acid tests to mutant allelic fraction in ctDNA. METHODS: We developed a ctDNA Epidermal Growth Factor Receptor (EGFR) mutational assay using giant magnetoresistive (GMR) nanosensors. This assay was validated in 36 plasma samples of non-small cell lung cancer patients with known EGFR mutations. We assessed therapy response through follow-up blood draws, determined concordance between the GMR assay and radiographic response, and ascertained progression-free survival of patients. RESULTS: The GMR assay achieved analytical sensitivities of 0.01% mutant allelic fraction. In clinical samples, the assay had 87.5% sensitivity (95% CI = 64.0-97.8%) for Exon19 deletion and 90% sensitivity (95% CI = 69.9-98.2%) for L858R mutation with 100% specificity; our assay detected T790M resistance with 96.3% specificity (95% CI = 81.7-99.8%) with 100% sensitivity. After 2 weeks of therapy, 10 patients showed disappearance of ctDNA by GMR (predicted responders), whereas 3 patients did not (predicted nonresponders). These predictions were 100% concordant with radiographic response. Kaplan-Meier analysis showed showed responders had significantly (P < 0.0001) longer PFS compared to nonresponders (N/A vs. 12 weeks, respectively). CONCLUSIONS: The GMR assay has high diagnostic sensitivity and specificity and is well suited for detecting EGFR mutations at diagnosis and noninvasively monitoring treatment response at the point-of-care.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available