4.7 Review

Recent advances in the improvement of g-C3N4 based photocatalytic materials

Journal

CHINESE CHEMICAL LETTERS
Volume 32, Issue 1, Pages 13-20

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.cclet.2020.11.011

Keywords

Carbon nitride; Modification; Enhancement; Photocatalyst; Hydrogen evolution reaction

Funding

  1. National Natural Science Foundation of China [51672109, 51802177]
  2. Independent Cultivation Program of Innovation Team of Ji'nan City [2019GXRC011]
  3. Natural Science Foundation of Shandong Province [ZR2018BEM019]

Ask authors/readers for more resources

g-C3N4 is widely used in photocatalytic applications such as hydrogen production, dye degradation, and toxic gas oxidation due to its excellent performance. Its efficient photocatalytic capacity has attracted extensive attention and research interest. The material's modification enhances its performance, making it a promising candidate for industrial applications in the future.
g-C3N4 have been widely used in the fields of photocatalytic hydrogen production, photocatalytic degradation of dyes and oxidative degradation of toxic gases due to their excellent performance. It has attracted extensive attention in recent years due to its highly efficient photocatalytic capacity of hydrogen generation, water oxidation, carbon dioxide reduction and degradation of organic pollutants. Because of the abundant carbon and nitrogen composition of the earth, large-scale production and industrial applications of this material are possible. The modification of this material makes its performance more excellent so that this new material can obtain a steady stream of vitality. These outstanding works have become important materials and milestones on the road to mankind's photocatalytic hydrogen production. This review will begin with the basic idea of designing, synthesizing and improving g-C3N4 based photocatalytic materials, and introduce the latest development of g-C3N4 photocatalysts in hydrogen production from four aspects of controlling the carbon/nitrogen ratio, morphology, element doping and heterojunction structure of g-C3N4 materials. (C) 2020 Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences. Published by Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available