4.7 Article

Streptomyces pactum addition to contaminated mining soils improved soil quality and enhanced metals phytoextraction by wheat in a green remediation trial

Journal

CHEMOSPHERE
Volume 273, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2021.129692

Keywords

Bioremediation; Mining soils; Soil microorganisms; Heavy metals; Sustainable management

Funding

  1. Science and Technology Overall Innovation Project of Shaanxi Province, China [2016KTCQ03-20]

Ask authors/readers for more resources

The study assessed the potential impact of Streptomyces pactum (Act12) on wheat growth and metal phytoavailability in industrial and mining soils. Results showed that Act12 promoted wheat growth, increased metal uptake in plants, and decreased antioxidant activities in contaminated soils.
Streptomyces pactum (Act12), an agent of a gentle in situ remediation approach, has been recently used in few works in phytoextraction trials; however, the impact of Act12 on soil quality and metal phytoavailability has not been assessed in multi-metal contaminated soils. Consequently, here we assessed the potential impact of Act12 on the wheat (Triticum aestivum L.) growth, antioxidants activity, and the metal bioavailability in three industrial and mining soils collected from China and contained up to 118, 141, 339, and 6625 mg Cd, Cu, Pb, and Zn kg(-1) soil, respectively. The Act12 was applied at 0 (control), 0.75 (Act-0.75), 1.50 (Act-1.5), and 2.25 (Act-2.25) g kg(-1) (dry weight base) to the three soils; thereafter, the soils were cultivated with wheat (bio-indicator plant) in a pot experiment. The addition of Act12 (at Act-1.5 and Act-2.25) promoted wheat growth in the three soils and significantly increased the content of Cd, Cu, and Zn in the roots and shoots and Pb only in the roots (up to 121%). The Act12-induced increase in metals uptake by wheat might be attributed to the associated decrease in soil pH and/or the increase of metal chelation and production of indole acetic acid and siderophores. The Act12 significantly decreased the antioxidant activities and lipid peroxidation in wheat, which indicates that Act12 may mitigate metals stress in contaminated soils. Enhancing metals phytoextraction using Act12 is a promising ecofriendly approach for phytoremediation of metal-contaminated mining soils that can be safely utilized with non-edible plants and/or bioenergy crops. (C) 2021 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available