4.7 Article

A componential approach for evaluating the sources of trace metals in municipal solid waste

Journal

CHEMOSPHERE
Volume 260, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2020.127524

Keywords

Municipal solid waste; Metals; Ash; Compost; Recycling; Reuse

Funding

  1. Alachua County Solid Waste and Resource Recovery Department (Gainesville, Florida)
  2. Hinkley Center for Solid and Hazardous Waste Management

Ask authors/readers for more resources

Trace metals concentrations of 25 elements were determined for 22 subcomponents of biodegradable and non-biodegradable waste samples representing the United States municipal solid waste (MSW) stream collected during three separate waste sorts. The subcomponent trace metal concentrations and estimated composition results were used to predict trace metal concentrations present in the overall MSW stream along with MSW compost and waste to energy (WTE) ash, which were compared to health-based standards (i.e., US EPA regional screening levels) and to values previously reported in the literature. These estimates for potentially problematic elements like As and Sb could be attributed to abundant base materials in MSW, while other elements, such as Pb, were calculated at much lower concentrations than other published studies. This suggests that trace metals measured in actual MSW compost and WTE ash could originate not only from MSW base components but also from other sources, such as highly concentrated low-mass wastes (e.g., e-waste). While the removal of small quantity components with high metal concentrations may reduce concentrations of some potentially problematic metals (e.g., Pb), others (e.g., As and Sb) are likely to persist in quantities that impede reuse and recycling since they are present in the more abundant base MSW components (e.g., papers, plastics, organics). Promoting meaningful reductions in potentially problematic trace metals in MSW-derived materials may require reevaluating their presence in higher-volume, lower-concentrated MSW components such as paper, plastics, and organics. (C) 2020 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available