4.7 Article

Degradation of tetracycline in water by biochar supported nanosized iron activated persulfate

Journal

CHEMOSPHERE
Volume 261, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2020.127844

Keywords

Persulfate; nFe(0)/BC; Activation; Tetracycline; Degradation

Funding

  1. National Natural Science Foundation of China [NSFC 21808246]
  2. National Innovation and Entrepreneurship Training Program for Undergraduate [202010316240]
  3. China Scholarship Council (CSC)

Ask authors/readers for more resources

Biochar supported nanosized iron (nFe(0)/BC) was synthesized and used as a persulfate (PS) activator to degradation tetracycline (TC). The influence of the initial pH values, PS and nFe(0)/BC dosage, initial TC concentration, and coexist anions were investigated. In the nFe(0)/BC-PS system, TC could be effectively removed at various pH values (3.0-9.0). The degradation efficiency of TC (100 mg/L) was 97.68% using nFe(0)/BC (0.4 g/L) and persulfate (1 mM) at pH 5.0. Coexisting ions (HCO3- and NO3-) had an inhibitory effect on TC degradation. The removal of TC could be fitted by a pseudo-second-order model. ElectronSpin Resonance (ESR) analysis and scavenging tests suggested that sulfate radicals (SO4 center dot(-)) and hydroxyl radicals (HO center dot) were responsible for TC degradation. Details of the advanced oxidation process (AOP)-induced degradation pathways of TC were determined based on liquid chromatography mass-spectrometry (LC-MS) analysis. The nFe(0)/BC could still maintain 86.38% of its original removal capacity after five cycles. The findings of this study proved that nFe(0)/BC can be applied to activate PS for the treatment of pollution caused by TC. (C) 2020 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available