4.7 Article

Atmospheric degradation of chrysene initiated by OH radical: A quantum chemical investigation

Journal

CHEMOSPHERE
Volume 263, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2020.128267

Keywords

Chrysene; OH radical; Oxidation products; Reaction mechanisms; Rate constants

Funding

  1. National Natural Science Foundation of China [21976107]
  2. Taishan Scholars

Ask authors/readers for more resources

Chrysene, a recalcitrant polycyclic aromatic hydrocarbon, undergoes atmospheric degradation initiated by OH radical, generating toxic oxygenated and nitro products. The study reveals the rate constant and atmospheric lifetime of chrysene in reaction with OH radical.
Chrysene, a four-ring polycyclic aromatic hydrocarbon (PAH), is recalcitrant to biodegradation and persistent in the environment due to its low water solubility. Here, we investigated the atmospheric degradation process of chrysene initiated by OH radical in the presence of O-2 and NOX using quantum chemical calculations. The reaction mechanisms were elucidated by density functional theory (DFT) at M06-2X/6-311++G(3df,2p)//M06-2X/6-311+G(d,p) level, and the kinetics calculations were conducted with Rice-Ramsperger-Kassel-Marcus (RRKM) theory. The results show that the oxidation products of atmospheric chrysene are oxygenated PAHs (OPAHs) and nitro-PAHs (NPAHs), including nitro-chrysene, hydroxychrysene, hydroxychrysenone, 11-benzo[a]fluorenone and dialdehydes. Most of the products have deleterious effects on the environment and human beings due to their acute toxicity, carcinogenicity and mutagenicity. The overall rate constant for the reaction of chrysene with OH radical is 4.48 x 10(-11) cm(3) molecule(-1) s(-1) and the atmospheric lifetime of chrysene determined by OH radical is 6.4 h. The present work provided a comprehensive understanding on the degradation mechanisms and kinetics of chrysene, which could help to clarify its atmospheric fate and environmental risks. (C) 2020 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available