4.7 Article

Impact of COVID-19 lockdown on air quality in Chandigarh, India: Understanding the emission sources during controlled anthropogenic activities

Journal

CHEMOSPHERE
Volume 263, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2020.127978

Keywords

COVID-19 lockdown; Air quality; PM2.5; VOCs; Pollution sources; Indo-gangetic plain

Funding

  1. Chandigarh Pollution Control Committee (CPCC)
  2. Health Care Without Harm (HCWH)
  3. University Grants Commission (UGC), New Delhi

Ask authors/readers for more resources

The study found significant variations in ambient air quality in Chandigarh during the COVID-19 lockdown. Concentrations of air pollutants fluctuated during different phases of the lockdown, primarily influenced by vehicular emissions and residential sources.
The variation in ambient air quality during COVID-19 lockdownwas studied in Chandigarh, located in the Indo-Gangetic plain of India. Total 14 air pollutants, including particulate matter (PM10, PM2.5), trace gases (NO2, NO, NOx, SO2, O-3, NH3, CO) and VOC's (benzene, toluene, o-xylene, m,p-xylene, ethylbenzene) were examined along with meteorological parameters. The study duration was divided into four parts, i.e., a) 21 days of before lockdown b) 21 days of the first phase of lockdown c) 19 days of the second phase of lockdown d) 14 days of the third phase of lockdown. The results showed significant reductions during the first and second phases for all pollutants. However, concentrations increased during the third phase. The concentrations of SO2, O3, and m,p-xylene kept on increasing throughout the study period, except for benzene, which continuously decreased. The percentage decrease in the concentrations during consecutive periods of lockdown were 28.8%, 23.4% and 1.1% for PM2.5 and 36.8%, 22.8% and 2.4% for PM10 respectively. The Principal Component Analysis (PCA) and characteristic ratios identified vehicular pollution as a primary source during different phases of lockdown. During the lockdown, residential sources showed a significant adverse impact on the air quality of the city. Regional atmospheric transfer of pollutants from coal-burning and stubble burning were identified as secondary sources of air pollution. The findings of the study offer the potential to plan air pollution reduction strategies in the extreme pollution episodes such as during crop residue burning period over Indo-Gangetic plain. (C) 2020 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available